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Abstract. We present the GeoRDFBench framework, whose purpose
is to assist and streamline the researcher’s work in the field of bench-
marking geospatial semantic stores. The runtime API models all iden-
tified benchmark components, groups them, forms specialization hier-
archies of classes and interfaces for them, and supports serialization to
and deserialization from external JSON specification files. The increased
reusability of these JSON benchmark specifications, allows focus to stay
on the research task ahead while minimizing the time from idea con-
ception to benchmark results and useful conclusions. Geospatial RDF
store architecture and behavior is unified by generalizing the repository
and connection functionalities of the three most common RDF frame-
work APIs used by RDF stores: OpenRDF Sesame, Eclipse RDF4J and
Apache Jena. GeoRDFBench goes even further and models the ap-
plication and database server modules present in some stores and au-
tomates their life-cycle management during experiment execution. The
framework comes with several geospatial RDF stores, implemented as
separate runtime-dependent modules. Each module contains scripts for
repository generation and experiment execution, which allows for a quick
start on using the platform. RDF modules include: RDF4J, GraphDB,
Stardog, Strabon, OpenLink Virtuoso and Jena GeoSPARQL.
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1 Introduction

Many projects have shown1 2 3 that spatial and temporal aspects of Linked Open
Data (LOD) are as important and critical, as sensitive thematic information, in
order to guide decision making [22]. Graph database systems with varying de-
grees of spatial support have recently been used to manage very large LOD
datasets [10,21,4,2,28,15,19,7,16]. Selecting the most suitable system for user

1 INSPIRE Directive https://inspire.ec.europa.eu/inspire-directive/2
2 SWING https://cordis.europa.eu/project/id/026514
3 ExtremeEarth project https://earthanalytics.eu/index.html
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https://cordis.europa.eu/project/id/026514
https://earthanalytics.eu/index.html
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needs and budget requires frequent evaluation of available systems, on infras-
tructure within the defined budget, with desired queryloads run against datasets
of appropriate size and content.

Benchmarks proposed in the literature have focused on automating some of
the arduous and repetitive tasks of benchmarking. Parametric ontology-based
synthetic generators [13,5,24,12,9] have assisted in creating datasets of desired
size and attributes, while log-mining techniques [24,32,9] helped creating more
application specific querysets. Benchmarking cloud platforms featuring distributed
file systems, containerization technologies and intuitive web UIs have allowed
reuse of implemented systems and workloads and ease of management. In all
cases however, the benchmark researcher has not been spared the effort to deal
with system configuration and optimization, spatial indexing setup, detailed
query execution exception handling and learning required technology stacks and
platform APIs.

Motivation for this work. Our experience with geospatial benchmarks on sin-
gle node and Spark-based distributed RDF stores along with synthetic data and
query generation [15,4,12] has led us to believe that the geospatial semantic store
research area would greatly benefit by the introduction of a lean but extensible
geospatial benchmarking framework that aims to assist system evaluators in cre-
ating new customizable benchmarks with many different systems, many workload
types, in as fast, credible and repeatable way as possible.

The proposed GeoRDFBench framework’s suffix “Bench” does not stand
for benchmarking only, but also as a reminder that our intention is for it to be
used as the “garage bench” were a researcher will find the necessary tool set
to try quickly and safely new ideas and get results. Our work does not place
emphasis on some of the nice to have features, such as UI, or containerized4

module execution and focuses initially on benchmarking single node geospatial
graph stores through the console. It allows parallel experiment execution of im-
plemented stores in the same node. Its architecture however allows its installation
in clustered environments with minimal additions, to also support distributed
file access API.

To the best of our knowledge, there is no similar work that combines a sub-
stantial part of the following features that are also the core contributions of our
framework:

1. It abstracts and implements specification hierarchies for components re-
quired to setup and run an experiment on a geospatial RDF store. Compo-
nents include: datasets, querysets, experiment execution, workloads, logging
specifications, report sinks, and hosts.

2. It abstracts and generalizes repository/connection functionality, from the
three best known RDF framework APIs: (i) OpenRDF Sesame, (ii) Eclipse
RDF4J and (iii) Apache Jena.

4 GeoRDFBench’s site includes containerized images for demonstration purposes.
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3. It abstracts and implements class hierarchies of geospatial enabled RDF
stores according to their basic module architecture and the RDF framework
APIs they support.

4. It provides several implemented modules5 for representative geospatial RDF
stores of different architectures and which use different RDF framework
APIs: (i) RDF4J, (ii) GraphDB, (iii) Stardog, (iv) Strabon, (v) Virtuoso,
(vi) Jena GeoSPARQL. These modules can act as templates for other stores
with similar architecture and in most cases the required code is minimal.

5. It provides an external library of JSON serialized instances for datasets,
querysets, experiment execution, workloads specifications of a geospatial
benchmark, a PostgreSQL implementation of the JDBC report sink and
hosts with Linux operating system.

6. It features a single experiment execution loop independent of the store ar-
chitecture and RDF framework API used.

7. It enables automatic result accuracy verification for workloads that have
embedded an expected resultset, while query execution accuracy results are
persisted with other statistics.

8. It allows synchronous or deferred persistence of experiment results with cus-
tomized statistics to a user-defined report sink.

9. Since GeoSPARQL is a superset of SPARQL, the framework can also be
used, as is, for SPARQL benchmarks.

The organization of the rest of the paper is as follows. Section 2 discusses
related work. Section 3 presents the high level architecture of the framework
while section 4 focuses on GeoRDFBench’s runtime. Finally, section 5 presents
conclusions and future work.

2 Related Work

In this section, we present related work on graph and geospatial graph store
categories, architecture, evaluation criteria and benchmarking.

Graph Store Categories. Graph stores in general, follow either the RDF or the
LPG approach. RDF as a data model has good expressivity, while featuring a
standardized declarative query language SPARQL6 and a standardized spatial
vocabulary GeoSPARQL [23]. LPGs, on the other hand, excel in graph traversal
and path search for analytics and machine learning. But they lack standardiza-
tion as there are several data models and languages from high-profile vendors
and institutions, such as, Neo4j’s Cypher7, Apache TinkerPop Gremlin [31], the
Oracle supported PGQL [29] and G-Core [1] from the Linked Data Benchmark
Council (LDBC). Another issue is that some of these languages are declarative
while others are procedural. To conclude, at the time of writing of this paper,
most geospatial graph databases that support complex geometries support the
RDF model.
5 GeoRDFBench framework is a Java Maven multi-module POM project.
6 https://www.w3.org/TR/sparql11-query/
7 https://neo4j.com/developer/cypher/

https://www.w3.org/TR/sparql11-query/
https://neo4j.com/developer/cypher/
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Geospatial Graph Store Architecture. All stores have some front-end application,
usually a terminal or web-based console, through which the user can create
repositories, load datasets to and run queries against them. Depending on the
system, this console may communicate directly with the back-end or may relay
requests to an application module acting as a proxy.

The application module is usually an HTTPS server or servlet container,
such as, Nginx or Eclipse Jetty, with multi-user, load balancing and connection
reuse as general capabilities. It also allows centralized semantic store configura-
tion with sane default values for all unconfigured user sessions.

Due to the large size of linked datasets, many systems, apart from the con-
sole embedded ingestion utilities, they offer dedicated bulk loading utilities

which can speed up the import step. Such an example is the Preload and Load-
RDF tools in Ontotext’s GraphDB. These tools, usually follow the pattern of,
deferring index creation on one hand while using multiple executing threads of
contemporary CPUs to ingest a hint-driven chunk-dissected dataset.

For the back-end module, storage type and indexing methods are the usual
differentiating factors. Some stores, mostly research-oriented and especially early
ones, employ rigid architectures based on specific implementation recipes. For
example, Parliament [2] uses the embedded key-value database Berkeley DB with
a standard R-tree spatial index, Strabon [21] uses PostgreSQL and PostGIS with
an R-tree over GiST [14] spatial index, uSeekM follows the same path but for
spatial information only and native file storage is used for storing and managing
thematic information with B+ trees, while Oracle Spatial And Graph8 uses an
R-tree spatial index on top of its proprietary industry leading RDBMS solution.
More contemporary market-driven stores offer elastic architectures which effec-
tively decouple modules from specific implementation choices by offering many
compatible alternatives for each one of them. For example, Virtuoso offers vir-
tual graphs over many well known data and file formats such as Excel, XML
files and RDBMS data sources.

Geospatial Graph Store Evaluation Criteria. The growth rate of LOD sizes ques-
tions the ability of graph databases to persist this big data, while at the same
time pose a critical challenge for the performance of these stores under query
loads of interest. For spatial data, we face an additional challenge which is the
approximate nature of data representation, especially with the indexing pro-
cess. Most spatial indexing algorithms, such as, quad [11] and geohash9 prefix
trees support a precision parameter which basically controls how many results
will match a spatial filter. Better accuracy requires more storage and brings a
performance penalty, so most systems try to balance between the two. The spa-
tial index algorithm and precision are either fixed for the store, defined upon
database creation or dynamically defined even after database creation. Setting
up a system with lower accuracy, has the benefit of reduced storage size, bulk load

8 https://docs.oracle.com/en/database/oracle/oracle-database/19/
spatial-and-graph.html

9 https://en.wikipedia.org/wiki/Geohash

https://docs.oracle.com/en/database/oracle/oracle-database/19/spatial-and-graph.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatial-and-graph.html
https://en.wikipedia.org/wiki/Geohash
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time and query execution times. Therefore, we have 3 important check points
that a geospatial semantic benchmark should measure when testing spatially
enabled stores: (i) bulk load ability for huge dataset sizes, (ii) query execution
performance for various query loads and (iii) query execution accuracy. While a
valid accuracy test is comparing the query resultset against the expected result-
set, storage requirements for large expected resultsets make this impractical as a
general approach. Low selectivity queries against a 100M-triple dataset or even
highly selective queries against a 10G-triple dataset can yield 10M-triple result-
sets. A more general approach is to evaluate the system accuracy in a piecemeal
fashion using a benchmark comprising several workloads. Small realworld or syn-
thetic datasets with simple and highly selective queries that use each one of the
operators of interest, make it easy to check accuracy and find implementation
or configuration issues with a system. With the previous issues resolved10, we
proceed with large realworld datasets with querysets of interest where for each
query we compare the number of returned results against the expected number
of results. Under the preconditions mentioned, this is a good indicator of the
query accuracy since it is fast to verify and with low storage requirements which
makes it easy to persist and disseminate.

Benchmarking Graph Stores. Various SPARQL and GeoSPARQL benchmarks
have been devised over the past 20 years to test the supported features and per-
formance of graph stores. Well known SPARQL benchmarks include: LUBM [13],
BSBM [5], DBpedia SPARQL benchmark (DBPSB) [24] and the Social Network
Benchmark (SNB) [9], just to mention a few. GeoSPARQL benchmarks have
been presented in [27,26], the benchmark Geographica in [12], a smart city ser-
vices related benchmark in [3], a compliance benchmark in [18] and Geographica
2 in [15].

Benchmarking is a notoriously difficult, time-consuming, resource intensive,
high complexity, multi-parameter and error prone process even when human na-
ture’s bias is not present to favor one of the proposed solutions. Since graph
stores are continuously evolving and offer improved efficiency and new capabil-
ities, it is also a process that needs to be repeated regularly, if the benchmark
results are to reflect a valid image of the graph store ecosystem.

Benchmarking Frameworks. A benchmarking framework is a software platform
that allows: (i) easy integration of systems of interest, (ii) easy integration
of existing benchmarks, (iii) easy generation and customization of benchmark
datasets and querysets, (iv) running experiments of a benchmark against one
or more systems, (v) collecting experiments results and system logs, (vi) result
analysis and finally (vii) easy experiment verification. Some of these features
appeared as new ideas or automations included in different benchmarks, which
however should not create the impression that these benchmarks can be consid-
ered proper frameworks.

In particular, several SPARQL and GeoSPARQL benchmarks have gener-
alized or automated the queryset and dataset generation task. For example,

10 Removing problematic queries or reconfiguring the system.
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LUBM, which focuses on reasoning, features a university ontology-based syn-
thetic data generator able to scale to arbitrary sizes. DBPSB’s queryset creation
process is based on querylog mining, clustering and SPARQL feature analysis,
which is applied to the DBpedia knowledge base and shows that performance
of triple stores is by far less homogeneous than suggested by non application-
specific benchmarks. FEASIBLE [32] suggests an automatic approach for the
generation of application-specific benchmark querysets (SELECT, ASK, DE-
SCRIBE and CONSTRUCT) out of the application’s query logs history, thus
enhancing insights as to the real performance of triple stores employed for a
given application. IGUANA [6] innovates by providing an execution environ-
ment which can measure the performance of RDF stores during data loading,
data updates as well as under different loads and parallel requests. LITMUS [33]
proposes uniform benchmarking of non-spatial data management systems sup-
porting different query languages, such as, SPARQL and Gremlin. Geograph-
ica and Geographica 2 include an ontology-based geospatial synthetic generator
able to create spatial datasets of arbitrary size and also generate the corre-
sponding queryset with a user defined thematic and spatial selectivity. Kobe [20]
cloud benchmarking engine for federated query processors includes the GeoFed-
Bench [34] benchmark, which focuses on validation of the actual crop land usage
against the Austrian land survey dataset.

A more recent idea is that of a benchmarking framework platform. These are
benchmarking frameworks designed for deployment to cloud infrastructures, with
distributed file systems and containerization technologies. They are multi-user
environments where researchers can store and share datasets, querysets, execu-
tion results and system modules. HOBBIT [30], the most complete of these plat-
forms, extends the scope of benchmarking to the entire linked data life-cycle [25],
such as link discovery [17], employs intuitive web UIs and allows the integration
of systems in various programming languages. Overall, it seems that HOBBIT
achieves generality to accommodate benchmarks across the whole Linked Data
life-cycle, achieves component flexibility with containerization, promotes lan-
guage independence, vertical scalability and compliance to FAIR initiative. On
the other hand, HOBBIT increases platform complexity, sacrifices usability for
new users and does not provide out-of-the-box benchmark-specific and system-
specific knowledge reusability for benchmark researchers. Human scholars need
to heavily invest on this framework and still not get the expected assistance
for their effort. The HOBBIT platform and FAIR Data Principles are further
discussed in the GeoRDFBench Framework site11.

3 GeoRDFBench: A Framework Simplifying Geospatial
Semantic Benchmarking

In this and the following section we present the technical details of the GeoRDF-
Bench framework, starting with its high level architecture which is shown in
Figure 1.

11 https://geordfbench.di.uoa.gr

https://geordfbench.di.uoa.gr
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Fig. 1: Architectural overview of GeoRDFBench Framework

The system consists of two main parts: the runtime and the RDF mod-
ules, depicted inside the dashed border. The runtime is the engine and fabric
of the framework and it is responsible for generating default JSON benchmark
specifications and executing experiments initiated by the RDF modules’ run
scripts. The RDF modules is where pre-implemented and newly implemented
RDF stores reside that can participate in experiments. Stores use their reposi-
tory creation script to create repositories and import data to them. Each store’s
experiment run script initiates a benchmark experiment and eventually invokes
the runtime’s experiment executor component passing all required inputs which
include, among others: the RDF store, the repository, the benchmark workload,
the host where the experiment is conducted on and the report sink where exper-
iment results and statistics will be stored. Both types of scripts send progress
messages to the optionally enabled, remote or local, notification server which
logs them and serves as a useful non-intrusive monitoring tool for the researcher.

The default JSON specifications correspond to the Geographica 2 bench-
mark’s components and are generated by the JSON Specs Generator. This “starter
dough” library is stored on the file system separately from GeoRDFBench and
can be easily copied or modified by the user. The workload specifications in par-
ticular can be modified by injecting to them an experiment’s resultset12, which
allows for accuracy validation of future experiments with the same workload.

12 Number of results for each query.
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4 GeoRDFBench Runtime: The Framework Engine

The GeoRDFBench runtime consists of four components: (i) the Abstract

API, (ii) the RDF Framework Specific API Implementations, (iii) the Experiment
Executor and (iv) the JSON Specification Generator.

In this section, the term system is used to refer to the repository functionality
of a geospatial RDF store, while the term system under test (SUT) is used to
refer to the system-host pair, along with management capabilities of the system’s
application and database server status, if they are present. The SUT knows how
and in which sequence to start and stop the application server, repository and
database server of the system and to clear system caches. SUT is also the vehicle
with which experiment timed queries are executed.

4.1 Abstract API

Fig. 2: EER diagram of Abstract API - Experiment Components

This is a core part of the GeoRDFBench’s benchmarking API. It abstracts
the properties, functionalities and interactions of the benchmark experiment com-
ponents and the SUT. On the conceptual level, the two simplified13 Enhanced-
ER (EER) diagrams, in Figure 2 and in a part of Figure 3, show the important
entities, their specializations, how they are associated, along with the corre-
sponding structural constraints (cardinality constraints) for these associations.

On the implementation level, the Abstract API creates class hierarchies for
each component type, exposes common functionality with appropriate interfaces
and uses abstract classes to pull up properties and provide default implementa-
tions for operations.

13 Only important entities, specializations and relationships are depicted while at-
tributes are omitted.
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Experiment Components Figure 2 depicts the experiment components which
are detailed below:

Fig. 3: EER diagram of Abstract API - System Under Test

Benchmark Specification. This group includes all components necessary to de-
scribe a benchmark which are independent of the platform where the experi-
ment runs. There are two forms available: (i) the detailed form uses independent
component specifications and (ii) the compact form which uses the workload
“container” concept to group several components. With the exception of the
workload, all components described below are part of the detailed form.

1. dataset: the entity ComplexDataset, in Figure 2, represents the “complex”
or “composite” geospatial dataset which can comprise one or more “simple”
geospatial datasets represented by the SimpleDataset entity. The simple
dataset specification contains: a logical name, the dataset relative path loca-
tion, the filename, the RDF serialization format, a map of dataset relevant
namespace prefixes, a map of properties that link features with their ge-
ometries which represent their spatial extent e.g., geo:hasGeometry, a map
of properties that link a geometric element with its WKT serialization e.g.,
geo:asWKT, and the scaling factor used in case of a synthetic dataset. The
complex dataset specification contains: a logical name, the dataset base path
location, a map of contexts (named graphs) and the list of simple datasets
comprising it. Experiments use only complex datasets. The runtime com-
putes the final location of a complex dataset’s files by concatenating the
host’s base path for dataset files, the complex dataset’s base path, the sim-
ple dataset’s relative path and filename.

2. queryset: the entity QuerySet, in Figure 2, represents the geospatial query-
set which can comprise one or more queries represented by the Query entity.
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The query specification contains: a label, the GeoSPARQL query text which
may contain replaceable tokens (template parameters), a flag that signals
the existence of spatial predicate and the accuracy validation indicator. The
accuracy indicator denotes whether the expected number of results returned
by the query is dataset-dependent, template-dependent, or independent. The
queryset specification contains: a logical name, the queryset path location, a
map of queryset relevant namespace prefixes, a map of fixed, static template,
or dynamic template queries with arithmetic index and replacement maps
that assist in creating ground queries from template queries. Experiments use
only querysets, which can be filtered at run time. The StaticTempParamQS

subclass models sets of template parameter queries which have fixed pa-
rameter values for all queries. DynamicTempParamQS subclass models sets of
template parameter queries which may have different value for each parame-
ter for each query. While these subclasses are useful for “micro”14 experiment
types, the MacroQS subclass and its specializations15 are useful for “macro”16

experiment types.
3. execution specification: the entity Execution, in Figure 2, describes which

experiment action (run, print) to take, the query execution types (cold,
warm, cold continuous) and number of repetitions per type, the query rep-
etition timeout and total timeout for all repetitions, the delay period for
synchronous clearing of system caches, the function to use for aggregating
execution times and the policy to follow when a cold execution times out.
The non-default print action triggers a pseudo-execution which generates
the ground queryset for inspection purposes.

4. workload(compact form): the entity Workload, in Figure 2, represents the
compact form of the benchmark experiment description: dataset + queryset
+ execution specification. The execution specification, however, depends al-
most entirely on the queryset at hand, since it describes the experiment logic
to apply for the queryset in order for it to achieve its purpose. Therefore,
the exact internal representation of the workload is:

workload{ dataset{ ..}, queryset{ .., execution specification{ ..} } }.

Experiment environment. This group includes all platform dependent compo-
nents, such as, what hardware platform and operating system the experiment
runs on and which storage facility the results and statistics are to be recorded
to. The result report store does not need to reside in the experiment execution
platform.

1. operating system: the entity OS, in Figure 2, represents the host’s operat-
ing system and features a name, the shell command path, the commands for
synchronizing cached data to persistent storage and the one for fully clearing
caches (pagecache, dentries and inode).

14 Independent queries, each run several times with cold or warm caches.
15 Not shown in Figure 2 for simplicity reasons.
16 A sequence of queries representing a case scenario, that is run repeatedly as a whole.



The GeoRDFBench Framework 11

2. host: the entity Host, in Figure 2, represents the hardware platform where
the benchmark experiment is taking place. It has the host name, IP address,
total RAM (GBs), the base path for dataset files, the base path for RDF
store repository files and the base path for the default reports and statistics.
Since, the operating system specification depends entirely on the host on
which it is installed, the exact internal representation is:

host{ .., operating system{ ..} }

3. report sink: the entity ReportSink, in Figure 2, describes the experiment
result report store, where the customized reports and statistics will be sent.
The default report store is a PostgreSQL JDBC implementation and has as
properties, the driver name, hostname, alternate hostname, port, database
name, user and password. Alternate hostname allows for having a fall-back
database where results from extremely long running experiments can be
saved. The PostgreSQL report store has as default behavior the deferred
insertions for query execution results, that involves an experiment result
collector which flushes results upon experiment termination. In this way, we
avoid synchronous result insertions to the report sink, which would be dis-
rupted by the repetitive restarts of the database component for SUTs using
the same DBMS as the report sink. The target report sink database schema
is generated with the help of the runtime-bundled database generation SQL
script.

4. logging specification17: the entity LoggingSpec, in Figure 2, allows cus-
tomization of the number of resultset entries to be logged during the query
execution scanning phase of the Experiment Executor. A positive non zero
integer value allows for a sample of the results returned by each query to
be recorded in the experiment log and can be used as a proof of concept
that a system performs accurately or similar to other systems. Such a set-
ting is useful in early benchmarking phases and can help identify, early on,
issues with disabled plugins, external libraries, or with incorrect results by
non-compliant function behavior. A zero value, on the other hand, allows
for very accurate calculation of the query response time and is useful in the
final benchmarking phase.

Systems and SUTs In Figure 3, the parent concepts of system and SUT com-
ponents only, are also part of the Abstract API. The entity System represents an
RDF framework independent geospatial semantic store and more specifically the
repository aspect of it. It is described by a map of properties and their values,
such as repository location and name, system relevant namespace prefixes, as
well as various indexing parameters. It also has a connection property which al-
lows query execution and a flag to denote whether the store has been initialized.
The entity SystemUnderTest on the other hand represents the combination of

17 Also mentioned as ReportSpec in the framework
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a System with its optional application and database server components, repre-
sented by AppServer and DbServer respectively.

On the implementation level, the Abstract API comprises two layers: (i) the
Geospatial System Abstraction Layer, which is depicted in the lower left two hier-
archy levels of Figure 4, and (ii) the System Under Test (SUT) Abstraction Layer,
which is the lower right level of the same figure, both of which are explained be-
low. Due to the fact that GeoRDFBench was influenced by the Geographica
2 benchmark, several implementation components have “Geographica” in their
name, which for all intents and purposes can be interpreted as “Geospatial”.

1. Geospatial System Abstraction Layer This layer comprises one inter-
face that describes a geospatial RDF store and one abstract class that im-
plements the RDF framework independent common functionality.

(a) The Geospatial Graph System Interface (IGeographicaSystem), is a
contract that requires functions for: setting a map of system properties,
system initialization, system termination and a function that returns
system specific namespace prefix mappings.

(b) The Base Abstract Implementation (AbstractGeographicaSystem) of
IGeographicaSystem, is an abstract class that uses generics and encap-
sulates the system properties map, the initialization status, the generic
repository “connection”, which is RDF Framework specific and the skele-
ton functionality to handle these. This generic “connection” corresponds
to an appropriate RDF Framework abstraction that allows creating query
instances on a system repository.

2. System Under Test (SUT) Abstraction Layer This layer comprises the
generic Geospatial Graph SUT Interface (ISUT), which is a contract that re-
quires functions for: retrieving the host, the generic “system”, execution and
report specifications, starting and terminating the application and database
server, making system dependent translations of the queryset and executing
timed queries.

4.2 RDF Framework Specific APIs

The second part of the core API, on the conceptual level, is depicted in part of
Figure 3 which includes the specializations of system and SUT. In a similar man-
ner, system and SUT concepts have three child entities to model the correspond-
ing three RDF framework specific concepts: RDF4JBasedSystem, JenaBasedSys-
tem, SesameBasedSystem, RDF4JBasedSUT, JenaBasedSUT and SesameBased-
SUT.

On the implementation level, this part comprises two parts: (i) the RDF
Framework Specific System Layer, which is depicted by the left side of “RDF
Framework Implementation” level of Figure 4, and (ii) the RDF Framework
Specific SUT Layer, which is the right side of the same level, both of which are
explained below.
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Fig. 4: Systems & SUT Class Hierarchies

RDF Framework Specific System Layer This layer consists of three spe-
cializations of the AbstractGeographicaSystem class, one for each RDF frame-
work supported by the GeoRDFBench runtime. Each class grounds the generic
“connection” to the most appropriate interface or class of the RDF framework
it implements. Since each framework has more than one major release, which
commonly break backward compatibility, the exact version of each RDF frame-
work supported by the runtime was based on its usage by RDF graph stores.
The three specialization classes are:

1. Sesame API (SesamePostGISBasedGeographicaSystem):

Most scalable RDF solutions based on Sesame, use v2.6.x since support of
the RDBMS Sail was deprecated after that. This Sail allowed graph stores
to tap, among other things, into geospatial and other capabilities provided
by well known DBMSs’ such as PostgreSQL with PostGIS. Therefore, this
implementation adds: host, port, database name, user and password, to the
system properties map and handles them appropriately. The generic “con-
nection” type is replaced with class:

org.openrdf.repository.sail.SailRepositoryConnection

2. RDF4J API (RDF4JBasedGeographicaSystem):

Version 4.x of RDF4J is not supported by all systems, requires Java 11 as
the bare minimum, removes initialize methods on Repository, Sail APIs and
RepositoryManager and upgrades Lucene libraries from 7.7 to 8.5 affecting
disk indexing. Version 3.7.x on the other hand is widely supported by all
systems while still offering the required functionality. This implementation
focuses on the NativeStore Sail and adds the repository base directory, repos-
itory name and indexes used. The generic “connection” type is replaced with
interface:

org.eclipse.rdf4j.repository.RepositoryConnection

3. Jena API (JenaBasedGeographicaSystem):

Since only Jena GeoSPARQL uses this API, we simply chose the most fre-
quently used Jena version in Maven Central18, from the latest stable branch,
which was 3.17.x. Jena Tuple Database19 (TDB) was preferred over TDB2 as

18 https://mvnrepository.com/repos/central
19 https://jena.apache.org/documentation/tdb/index.html

https://mvnrepository.com/repos/central
https://jena.apache.org/documentation/tdb/index.html
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the persistent storage option as it did not raise as many issues during devel-
opment. This implementation adds the repository base directory, repository
name and injects the transaction functionality in the system initialization
and termination code. The generic “connection” type is replaced with inter-
face:
org.apache.jena.rdf.model.Model

RDF Framework Specific SUT Layer This layer consists of three base
implementations of the ISUT interface with the corresponding abstract classes:
SesamePostGISBasedSUT, RDF4JBasedSUT and JenaBasedSUT. Each class among
other things handles the details of initialization and termination of system, ap-
plication and database server components of the SUT either as a whole or on a
component basis. They also invoke system specific query translations, manage
and monitor query execution which takes place in a separate thread, such as,
enabling timeout for the executing query and handling customized exceptions
thrown by different RDF frameworks during the query evaluation phases.

4.3 Experiment Executor

The executor comprises the concrete Experiment and abstract RunSUTExperiment
classes. The subclasses of RunSUTExperiment that RDF modules have to imple-
ment are the entry points for all experiment run scripts. The RunSUTExperiment,
parses the script arguments that describe which JSON specifications (see Figure
1) need to be deserialized into experiment component instances, applies query-
set filter if needed, configures the SUT with the above and finally launches the
Experiment run loop. Two actions, performed at the experiment construction
time, are the namespace prefix map merging between the corresponding maps of
the system, dataset and queryset along with system dependent queryset rewrites
in case non standard vocabularies are used offering similar functionality.

4.4 JSON Specification Generator

This runtime component is a collection of runnable utility classes with no param-
eters, one for each experiment component type, which create all the specifications
necessary to run the Geographica 2 benchmark. This is a geospatial benchmark
which the majority of dataset, queryset and execution specifications’ types. The
user can use them as templates to create new JSON specifications by copying
the most similar one and appropriately modifying it. These JSON specifications
are part of the project build tree and are readily available to the user.

A more involved researcher can also use the utility class code as examples for
easily constructing component specifications for other benchmarks. This is an
excellent top-down approach for getting acquainted with the GeoRDFBench’s
serialization/deserialization capabilities.

Internally, the Jackson20 JSON library is used to annotate interfaces and
class hierarchies to simplify serialization and deserialization. For example, when

20 https://github.com/FasterXML/jackson

https://github.com/FasterXML/jackson
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deserializing through a IGeospatialWorkLoadSpec workload interface variable,
the runtime knows that it should use the concrete SimpleGeospatialWL to do so,
since we used the @JsonDeserialize annotation with the concrete class name
as the argument for the "as" annotation parameter.

@JsonDeserialize(as = SimpleGeospatialWL.class)
public interface IGeospatialWorkLoadSpec {...}

The detailed component type hierarchies, create the need to handle many
polymorphic instances which must be properly serialized, otherwise it will be
impossible to deserialize them. As an example, the serialization process of the
class hierarchy starting at the SimpleGeospatialWL class is assisted by placing
the @JsonTypeInfo annotation.

@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS,
include = JsonTypeInfo.As.PROPERTY, property = "classname")
public class SimpleGeospatialWL implements IGeospatialWorkLoadSpec {...}

The annotation’s parameter values specify that the full class name of any
polymorphic instance will be also included as an extra JSON property “class-
name”, as it is shown below:

{ "classname" : "...runtime.workloadspecs.impl.SimpleGeospatialWL",
"name" : "CensusMacroGeo",
"relativeBaseDir" : "", ...}

5 Conclusions and Future Work

We presented the concepts and architecture of the GeoRDFBench Framework,
which aims to: (i) save the researcher’s time and effort testing new systems,
(ii) minimize the margin for errors, (iii) increase reproducibility and results’
verification, while (iv) remaining extensible. The 6 implemented RDF Modules
provide ample and concrete evidence that introducing a new system requires the
absolute necessary user coding to handle only additional properties or deviating
system behaviors. Jena GeoSPARQL and GraphDB required the least and most
trivial coding. Stardog and Virtuoso required additional code to handle the server
aspects of their architecture and query translation to handle non-compliance to
the GeoSPARQL standard. Source code, running examples and instructions are
provided in our sites21.

Future work will include support for Hadoop file system and a fourth Spark-
based framework API, so that Spark-based distributed GeoSPARQL solutions
can be tested.

21 https://github.com/tioannid/geordfbench, https://geordfbench.di.uoa.gr

https://github.com/tioannid/geordfbench
https://geordfbench.di.uoa.gr
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M., Svátek, V., Cruz, I.F., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.)
The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference,
Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 11779, pp. 181–197. Springer (2019). https://doi.org/10.
1007/978-3-030-30796-7 12, https://doi.org/10.1007/978-3-030-30796-7 12

20. Kostopoulos, C., Mouchakis, G., Troumpoukis, A., Prokopaki-Kostopoulou, N.,
Charalambidis, A., Konstantopoulos, S.: Kobe: Cloud-native open benchmarking
engine for federated query processors. In: The Semantic Web: 18th International
Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings 18. pp. 664–
679. Springer (2021)

21. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A semantic geospa-
tial dbms. In: The Semantic Web–ISWC 2012: 11th International Semantic Web
Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part I 11. pp.
295–311. Springer Berlin Heidelberg (2012)

22. Manolis Koubarakis (ed.): Geospatial data science: a hands-on approach based on
geospatial technologies. ACM Books (2023)

23. Matthew Perry, John Herring: OGC GeoSPARQL - A Geographic Query Language
for RDF Data. OGC Implementation Standard OGC 11-052r4, Open Geospatial
Consortium (Sep 2012), http://www.opengis.net/doc/IS/geosparql/1.0

24. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: Dbpedia sparql
benchmark–performance assessment with real queries on real data. In: The Se-
mantic Web–ISWC 2011: 10th International Semantic Web Conference, Bonn, Ger-
many, October 23-27, 2011, Proceedings, Part I 10. pp. 454–469. Springer (2011)

25. Ngomo, A.C.N., Auer, S., Lehmann, J., Zaveri, A.: Introduction to linked data and
its lifecycle on the web. Reasoning Web. Reasoning on the Web in the Big Data
Era: 10th International Summer School 2014, Athens, Greece, September 8-13,
2014. Proceedings 10 pp. 1–99 (2014)

26. Osman, T., Albiston, G.: Geosparql-jena: Implementation and benchmarking of a
geosparql graphstore. In: 23rd European Conference on Knowledge Management
Vol 2. Academic Conferences and publishing limited (2022)

http://www.vldb.org/conf/1995/P562.PDF
http://www.vldb.org/conf/1995/P562.PDF
https://doi.org/10.1609/aimag.v43i1.19120
https://doi.org/10.1609/aimag.v43i1.19120
https://doi.org/10.1609/aimag.v43i1.19120
https://doi.org/10.1609/aimag.v43i1.19120
https://doi.org/10.1007/978-3-030-30796-7\_12
https://doi.org/10.1007/978-3-030-30796-7_12
https://doi.org/10.1007/978-3-030-30796-7\_12
https://doi.org/10.1007/978-3-030-30796-7_12
https://doi.org/10.1007/978-3-030-30796-7_12
http://www.opengis.net/doc/IS/geosparql/1.0


18 T. Ioannidis and M. Koubarakis

27. Patroumpas, K., Giannopoulos, G., Athanasiou, S.: Towards geospatial semantic
data management: strengths, weaknesses, and challenges ahead. In: Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. pp. 301–310 (2014)

28. Perry, M., Estrada, A., Das, S., Banerjee, J.: Developing geosparql applications
with oracle spatial and graph. In: SSN-TC/OrdRing@ ISWC. pp. 57–61 (2015)

29. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph
query language. In: Boncz, P.A., Larriba-Pey, J.L. (eds.) Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and Systems,
Redwood Shores, CA, USA, June 24 - 24, 2016. p. 7. ACM (2016). https://doi.
org/10.1145/2960414.2960421, https://doi.org/10.1145/2960414.2960421
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