
The GeoRDFBench Framework:

Geospatial semantic benchmarking simplified

Theofilos Ioannidis

tioannid@di.uoa.gr

Department of Informatics and

Telecommunications, National and

Kapodistrian University of Athens

Athens, Greece

Nikos Mamoulis

nikos@cs.uoi.gr

Department of Informatics and

Telecommunications, University of

Ioannina

Ioannina, Greece

Manolis Koubarakis

koubarak@di.uoa.gr

Department of Informatics and

Telecommunications, National and

Kapodistrian University of Athens

Athens, Greece

Abstract

We present the GeoRDFBench framework, whose purpose is to as-

sist and streamline the benchmarking of geospatial semantic stores.

We identify and formally define all benchmark components, extend

them to represent their geospatial aspects, allow for the automatic

mapping of datasets to graphs, provide a specialization hierarchy

of queryset types for micro or macro experimental scenarios, even

for modeling dynamically generated queries. Queries may define

their expected resultset to enable automatic accuracy verification.

Experiment behavior and execution logic is controlled by the ex-

ecution specification, which dictates the action (run experiment

or print ground queries) to take, the number of repetitions per ex-

ecution type (cold, warm, continuous cold), the query repetition

and experiment timeouts, the delay period before clearing caches,

the aggregating function for reporting execution times, and the

policy to follow upon cold execution time out. We decouple these

declarative benchmark specifications from the framework’s execu-

tion engine and serialize them as JSON files; this way, we increase

their reuse (instantiation through deserialization), experiment re-

producibility and dissemination. We also model the Geospatial RDF

store optional application and database server modules and manage

their life-cycle (start, stop, restart) during experiment execution to

achieve ideal cold cache query executions. In addition, we unify

by generalization the repository and connection functionalities

of the three most common RDF framework Java APIs offered by

RDF stores: OpenRDF Sesame, Eclipse RDF4J and Apache Jena.

At the same time GeoRDFBench allows queryset filtering, auto-

matic system-dependent query namespace prefix generation and

query rewriting when non GeoSPARQL spatial vocabularies are

used. We provide for a quick learning start by implementing several

geospatial RDF stores as separate runtime-dependent modules with

repository generation and experiment execution scripts. RDF mod-

ules include: RDF4J with and without Lucene, GraphDB, Stardog,

Strabon, OpenLink Virtuoso and Jena GeoSPARQL.

Keywords

geospatial, semantic, benchmarking, framework

1 Introduction

Many projects [8, 10, 11] have shown that spatial and temporal

aspects of Linked Open Data (LOD) are as important and critical,

as thematic information, in order to guide decision making [40].

Preprint on Zenodo, Athens, Greece

2025. ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

Graph database systems with varying degrees of spatial support

have recently been used to manage very large LOD datasets [3, 5,

14, 16, 29, 30, 34, 37, 55]. Selecting the most suitable system requires

evaluating the most recent versions of available systems on accessible

infrastructure within the defined budget, with the desired queryloads

run against datasets of appropriate size and content.

There have been many efforts on automating some of the ar-

duous and repetitive tasks of benchmarking. Parametric ontology-

based synthetic generators [6, 15, 20, 21, 42] have assisted in creat-

ing datasets of desired size and attributes, while log-mining tech-

niques [15, 42, 63] helped creating more application specific query-

sets. Benchmarking cloud platforms featuring distributed file sys-

tems, containerization technologies and intuitive web UIs have

allowed reuse of implemented systems and workloads and ease of

management [59]. In all cases however, the benchmark researcher

has not been spared the effort to deal with system configuration

and optimization, spatial indexing setup, detailed query execution,

exception handling, and learning required technology stacks and

platform APIs.

Motivation for this work. Our geospatial benchmark experience

on single node and Spark-based distributed RDF stores along with

synthetic data and query generation [5, 20, 29] has led us to be-

lieve that the geospatial semantic store research area would greatly

benefit by the introduction of a lean but extensible geospatial bench-

marking framework with three main objectives.

First, it should conceptualize and formalize geospatial semantic

benchmarks and their execution environment making this knowledge

as reusable as possible, to enable users creating new benchmarks,

modify existing ones in as fast, credible and repeatable way as

possible.

Secondly, it should model the RDF stores’ architecture, the client

RDF Java providers they offer and, on behalf of the system evaluators,

implement as much of the configuration, optimization, module ad-

ministration, data loading and query execution logic as possible in

order to minimize the effort of adding new RDF stores or upgrading

existing ones for testing through the framework.

Thirdly, the framework should be extensible, meaning that, the

benchmark components, such as querysets, datasets, execution

model, the execution environment components, such as host, oper-

ating system, reporting sink, the RDF stores’ architecture modules

such as application and database servers and the client RDF Java

providers should provide all commonly identified functionality and

structural information but can be extended if needed in order to

include new subclasses with modified behavior.

1

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

Our work, at this stage, focuses on benchmarking single node

GeoSPARQL/SPARQL query engines through the console. It makes

it easy integrating new or updated RDF stores, provides a model

for declaratively describing a benchmark’s structure, behavior and

its host’s environment. It helps mapping existing benchmarks or

designing new ones, it is aware of and assists with the spatial as-

pects of systems and benchmark workloads and provides support

for GeoSPARQL/SPARQL query execution exception handling. It

also allows parallel experiment execution of implemented stores in

the same node with or without containers
1
. Perpendicular to our

direction, HOBBIT [59] provides a generalized architecture with

message bus connected containers for benchmarking the entire

Linked Data (LD) life cycle and non LD workloads and systems.

However this generality also forces it to be completely agnostic and

therefore provide no assistance to its users for systems’ integration,

dealing with the spatial aspects of the benchmark workloads or han-

dling the specific GeoSPARQL/SPARQL query language structure,

features and execution issues.

To the best of our knowledge, there is no previous work that

combines a substantial part of the following features that are also

the core contributions of our framework:

(1) It features a runtime, which abstracts and implements specifi-

cation hierarchies for components required to setup and run an

experiment on a geospatial RDF store. Components include:

datasets, querysets, experiment execution, workloads, logging

specifications, report sinks, operating systems and hosts. The

runtime contains the JSON generator whose API enables the

creation of serialized versions of all benchmark component

specifications. The framework comes pre-bundled with a li-

brary of JSON specifications which include the Geographica

2 [29] benchmark’s components, a PostgreSQL and an H2 [43]

embedded implementation of the JDBC report sink and hosts

with Linux and Windows operating systems.

(2) The runtime abstracts and generalizes repository connection

functionality from the three best known RDF framework APIs:

(i) OpenRDF Sesame, (ii) Eclipse RDF4J and (iii) Apache Jena.

At the same time, it explicitly models the RDF store appli-

cation and back-end modules by embedding their life-cycle

management in the experiment execution. It combines the

above by implementing class hierarchies of geospatial enabled

RDF stores according to their basic module architecture and

the RDF framework APIs they support.

(3) The framework provides example implementations for geospa-

tial RDF stores of different architectures and different RDF

framework APIs. These come in the form of Maven modules
2

and the list includes: (i) RDF4J [56] with or without Lucene

SAIL [57], (ii) GraphDB [47], (iii) Stardog [64], (iv) Strabon [37],

(v) Virtuoso [16], (vi) Jena GeoSPARQL [52]. These modules

can act as templates for other stores with similar architecture

and in most cases the required code effort is trivial as most

of the heavy lifting has been pulled upwards in the class

hierarchies of the runtime.

(4) The runtime experiment executor features a single experi-

ment execution loop independent of the store architecture

1
GeoRDFBench’s site includes containerized images for demonstration purposes.

2
GeoRDFBench framework is a Java Maven multi-module POM project.

and RDF framework API used. It enables automatic result

accuracy verification for workloads that have embedded an

expected resultset, while query execution accuracy results

are persisted with other statistics and provides a query trans-

lation hook. The executor features programmable timeout

and a fine grained error handling mechanism during each

one of the query execution phases, which allows it to mea-

sure results separately from scan errors
3
and minimize the

execution abort scenarios. It features query result sampling in

experiment logs for verification and debugging purposes. It

allows statistics customization and synchronous or deferred

experiment results’ persistence to a user-defined report sink.

(5) The framework can also be used for SPARQL benchmarks.

LUBM [21] benchmark’s workload component is included

in the JSON specification library.

The organization of the rest of the paper is as follows. Section 2

discusses related work. Section 3 presents the high level architec-

ture of the framework while section 4 explains GeoRDFBench’s

runtime. Showcasing the JSON generator API follows in section 5.

Section 6 shows an evaluation of the framework and section 7 com-

pares GeoRDFBench with HOBBIT and Geographica 2 benchmark.

Section 8 presents conclusions and future work. Finally, the ap-

pendix features a comparison of GeoRDFBench to Geographica

2.

2 Related Work and Background

In this section, we present related work on graph and geospatial

graph store categories, architecture, evaluation criteria and bench-

marking.

Graph Store Categories. Graph stores in general, follow either

the Resource Description Framework (RDF) or the Labeled Prop-

erty Graph (LPG) approach. RDF as a data model has good

expressivity, while featuring a standardized declarative query

language SPARQL [68] and a standardized spatial vocabulary

GeoSPARQL [41]. LPGs, on the other hand, excel in graph traver-

sal and path search for analytics and machine learning. But, until

very recently, they lacked standardization as there are several data

models and languages from high-profile vendors and institutions,

such as Neo4j’s Cypher [19], Apache TinkerPop Gremlin [60], the

Oracle supported PGQL [67] and G-Core [2] from the Linked Data

Benchmark Council (LDBC). Another issue is that some of these

languages are declarative while others are procedural. As of April

2024, the first edition of the Graph Query Language (GQL) stan-

dard [1] is officially published and hopefully will allow language

inter-operation with SPARQL. To conclude, at the time of writing

of this paper, most geospatial graph databases that support complex

geometries support the RDF model.

Geospatial Graph Store Architecture. The available geospatial

graph stores feature a 3-tier architecture with standard and optional

components. Their architecture is similar to that in Figure 1 which

shows their standard and optional components.

All stores have some front-end application, usually a terminal or

web-based console, through which the user can create repositories,
load datasets to and run queries against them. Depending on the

3
Usually due to invalid geometries or unsupported operators.

2

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

Figure 1: Geospatial Graph Store Architectures

system, this console may communicate directly with the back-end

or may relay requests to an application module acting as a proxy.

The application module is usually an HTTPS server or servlet

container, such as Nginx or Eclipse Jetty, with multi-user, load

balancing and connection reuse as general capabilities. It also allows

centralized semantic store configuration with sane default values

for all unconfigured user sessions.

Due to the large size of linked datasets, many systems, apart

from the console embedded ingestion utilities, they offer dedicated

bulk loading utilities which can speed up the import step.

Such an example is the Preload and LoadRDF tools in Ontotext’s

GraphDB.

For the back-end module, storage type and indexing methods

are the usual differentiating factors. Some stores, mostly research-

oriented and especially early ones, employ rigid architectures based

on specific implementation recipes. For example, Parliament [3]

uses the embedded key-value database Berkeley DB with a standard

R-tree spatial index, Strabon [37] uses PostgreSQL and PostGIS

with an R-tree over GiST [22] spatial index, uSeekM follows the

same path but for spatial information only and native file storage

is used for storing and managing thematic information with B+

trees, while Oracle Spatial And Graph [51] uses an R-tree spatial

index on top of its proprietary industry leading RDBMS solution.

More contemporary market-driven stores offer elastic architectures

which effectively decouple modules from specific implementation

choices by offering many compatible alternatives for each one of

them. For example, Virtuoso offers virtual graphs over many well-

known data and file formats, such as Excel, XML files and RDBMS

data sources.

Geospatial Graph Store Evaluation Criteria. The growth rate of

LOD sizes questions the ability of graph databases to persist this big

data, while at the same time it poses a critical challenge to the per-

formance of these stores under query loads of interest [5, 36]. For

spatial data, we face an additional challenge which is the approxi-

mate matching supported by the precision parameter of common

spatial indexing algorithms, such as quad [18] and geohash [69]

prefix trees, which basically controls how many results will match

a spatial filter. Better accuracy requires more index storage and

brings a storage and performance penalty, so most systems try to

balance between the two. The spatial index algorithm and precision

are either fixed for the store e.g., RDF4J, defined upon database

creation e.g., Stardog or dynamically defined even after database

creation e.g., GraphDB. Setting up a system with lower precision,

has the benefit of reduced storage size, bulk load time and query

execution times. Therefore, we have 4 important check points that

a geospatial semantic benchmark should measure when testing

spatially enabled stores: (i) equality of spatial index precision for all

systems under test, (ii) bulk load ability for huge dataset sizes, (iii)

query execution performance for various query loads and (iv) query

execution accuracy. The most valid query execution accuracy test is

comparing the query resultset against the expected resultset (gold

standard), as it is done in the Evaluation Storage module of HOBBIT.

However storage requirements for persisting large gold standard

resultsets make this impractical as a general approach. Low selec-

tivity queries against a 100M-triple dataset or even highly selective

queries against a 10G-triple dataset can yield 10M-triple resultsets.

A more general approach is to evaluate the system accuracy in

a piecemeal fashion using a benchmark comprising several work-

loads. Small real-world or synthetic datasets with simple and highly

selective queries that use each one of the operators of interest, make

it easy to check accuracy and find implementation or configura-

tion issues with a system. With the previous issues resolved
4
, we

proceed with large real-world datasets with querysets of interest

where for each query we compare the number of returned results

against the expected number of results. Under the preconditions

mentioned, this is a good indicator of the query execution accuracy

since it is fast to verify and with low storage requirements which

makes it both easy to persist and disseminate.

Benchmarking Graph Stores. Various SPARQL and GeoSPARQL

benchmarks have been devised over the past 20 years to test the

supported features and performance of graph stores. Well known

SPARQL benchmarks include: LUBM [21], BSBM [6], DBpedia

SPARQL benchmark (DBPSB) [42] and the Social Network Bench-

mark (SNB) [15], just to mention a few. GeoSPARQL benchmarks

have been presented in [52, 54], the benchmark Geographica in [20],

a smart city services related benchmark in [4], a compliance bench-

mark in [33] and Geographica 2 in [29].

Benchmarking is a notoriously difficult, time-consuming, resource

intensive, high complexity, multi-parameter and error prone process

even when human nature’s bias is not present to favor one of the

proposed solutions. Since graph stores are continuously evolving

and offer improved efficiency and new capabilities, it is also a process

that needs to be repeated regularly, if the benchmark results are

to reflect a valid image of the graph store ecosystem.

Benchmarking Frameworks. A benchmarking framework is a soft-

ware platform that assists with: (i) the integration of systems of

interest, (ii) integration of existing benchmarks, (iii) generation and

customization of benchmark datasets and querysets, (iv) running

experiments of a benchmark against one or more systems, (v) col-

lecting experiments results and system logs, (vi) result analysis and

finally (vii) easy experiment verification. Some of these features

appeared as new ideas or automations included in different bench-

marks, which however should not create the impression that these

benchmarks can be considered proper frameworks.

In particular, several SPARQL and GeoSPARQL benchmarks have

generalized or automated the queryset and dataset generation task.

4
Removing problematic queries or reconfiguring the system.

3

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

For example, LUBM, which focuses on reasoning, features a univer-

sity ontology-based synthetic data generator able to scale to arbi-

trary sizes. DBPSB’s queryset creation process is based on querylog

mining, clustering and SPARQL feature analysis, which is applied

to the DBpedia knowledge base and shows that performance of

triple stores is by far less homogeneous than suggested by non

application-specific benchmarks. FEASIBLE [63] suggests an auto-

matic approach for the generation of application-specific bench-

mark querysets (SELECT, ASK, DESCRIBE and CONSTRUCT) out

of the application’s query logs history, thus enhancing insights

as to the real performance of triple stores employed for a given

application. IGUANA [12] innovates by providing an execution

environment which can measure the performance of RDF stores

during data loading, data updates as well as under different loads

and parallel requests. LITMUS [65] proposes uniform benchmark-

ing of non-spatial data management systems supporting different

query languages, such as SPARQL and Gremlin. Geographica and

Geographica 2 include an ontology-based geospatial synthetic gen-

erator able to create spatial datasets of arbitrary size and also gen-

erate the corresponding queryset with a user defined thematic and

spatial selectivity. Kobe [35] cloud benchmarking engine for feder-

ated query processors includes the GeoFedBench [66] benchmark,

which focuses on validation of the actual crop land usage against

the Austrian land survey dataset.

Benchmarking Framework Platforms. These are multi-user envi-

ronments where researchers can store and share datasets, querysets,

execution results and system modules. They are designed for de-

ployment to cloud infrastructures, with distributed file systems and

containerization technologies. HOBBIT [59], the most complete

of these platforms, extends the scope of benchmarking to the en-

tire LD life-cycle [45], such as link discovery [31] and allows the

integration of systems in various programming languages. For a

comparison between GeoRDFBench and HOBBIT please refer to

Section 7.

3 GeoRDFBench: A Framework Simplifying

Geospatial Semantic Benchmarking

In this section we present the high level architecture of the GeoRDF-

Bench framework, which is shown in Figure 2.

The system consists of two main parts: the runtime and the RDF

modules, depicted inside the dashed border. The runtime is the en-

gine and fabric of the framework and it is responsible for generating

JSON benchmark specifications and executing experiments initi-

ated by the RDF modules’ run scripts. The RDF modules is where

pre-implemented and newly implemented RDF stores reside that

can participate in experiments. Stores use their repository creation

script to create repositories and import data to them. Each store’s

experiment run script initiates a benchmark experiment and eventu-

ally invokes the runtime’s experiment executor component passing

all required inputs which include, among others: the RDF store, the

repository, the benchmark workload, the host where the experi-

ment is conducted on and the report sink where experiment results

and statistics will be stored. Both types of scripts send progress mes-

sages to the optionally enabled, remote or local, notification server

which logs them and serves as a useful non-intrusive monitoring

tool for the researcher.

Figure 2: Architectural overview of GeoRDFBench Framework

The default JSON specifications correspond to the Geograph-

ica 2 and LUBM benchmarks’ components and are generated by

the JSON Specs Generator. This “starter dough” library is stored

on the file system separately from GeoRDFBench code. The user

can either implement new custom specifications using the JSON

Specs Generator API (Method 1) or copy and modify existing ones

(Method 2).

4 GeoRDFBench Runtime: The Framework’s

Engine

The GeoRDFBench runtime consists of four components: (i)

the Abstract API, (ii) the RDF Framework Specific API
Implementations, (iii) the Experiment Executor and (iv) the

JSON Specification Generator.
In this section, the term system is used to refer to the repository

functionality of a geospatial RDF store, while the term system un-

der test (SUT) is used to refer to the system-host pair, along with

management capabilities of the system’s application and database

server status, if they are present. The SUT knows how and in which

sequence to start and stop the application server, repository and

database server of the system and to clear system caches. SUT is

also the vehicle with which experiment timed queries are executed.

4.1 Abstract API

This is a core part of the GeoRDFBench’s benchmarking API. It ab-

stracts the properties, functionalities and interactions of the bench-

mark experiment components and the SUT. On the conceptual level,

the two simplified
5
Enhanced-ER (EER) diagrams, in Figure 3 and in

a part of Figure 4, show the important entities, their specializations,

how they are associated, along with the corresponding structural

constraints (cardinality constraints) for these associations.

5
Only important entities, specializations and relationships are depicted while attributes

are omitted.

4

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

Figure 3: EER diagram of Abstract API - Experiment Components

Figure 4: EER diagram of Abstract API - System Under Test

On the implementation level, the Abstract API creates class hier-

archies for each component type, exposes common functionality

with appropriate interfaces and uses abstract classes to pull up

properties and provide default implementations for operations.

4.1.1 Experiment Components. Figure 3 depicts the experiment

components, which are detailed below and which are logically orga-

nized into the Benchmark Specification and Experiment Environment

groups.

Benchmark Specification. This group includes all components

necessary to describe a benchmark which are independent of the

platform where the experiment runs. There are two forms available:

(i) the detailed form uses independent component specifications and

(ii) the compact form which uses the workload “container” concept

to group several components. With the exception of the workload,

all components described below are part of the detailed form.

Dataset. The entity ComplexDataset, in Figure 3, represents

the “complex” or “composite” geospatial dataset which can com-

prise one or more “simple” geospatial datasets represented by the

SimpleDataset entity. The simple dataset specification contains: a

logical name, the dataset relative path location, the filename, the

RDF serialization format, a map of dataset relevant namespace pre-

fixes, a map of properties that link features with their geometries

which represent their spatial extent e.g., geo:hasGeometry, a map

of properties that link a geometric element with its WKT serial-

ization e.g., geo:asWKT, and the scaling factor used in case of a

synthetic dataset. The complex dataset specification contains: a log-

ical name, the dataset base path location, a map of contexts (named

graphs) and the list of simple datasets comprising it. Experiments

use only complex datasets.

Queryset. The entity QuerySet, in Figure 3, represents the

geospatial queryset which can comprise one or more queries repre-

sented by the Query entity. The query specification contains: a label,

the GeoSPARQL query text which may contain replaceable tokens

(template parameters), a flag that signals the existence of spatial

predicate and the accuracy validation indicator. The accuracy in-

dicator denotes whether the expected number of results returned

by the query is dataset-dependent, template-dependent, or inde-

pendent. The queryset specification contains: a logical name, the

queryset path location, a map of queryset relevant namespace pre-

fixes, a map of fixed, static template, or dynamic template queries

with arithmetic index and replacement maps that assist in creat-

ing ground queries from template queries. Experiments use only

querysets, which can be inclusively or exclusively filtered at run

time. The StaticTempParamQS subclass models sets of template pa-

rameter queries which have fixed parameter values for all queries.

DynamicTempParamQS subclass models sets of template parameter

queries which may have different value for each parameter for each

query. While these subclasses are useful for “micro”
6
experiment

types, the MacroQS subclass and its specializations
7
are useful for

“macro”
8
experiment types.

Execution specification. The entity Execution, in Figure 3,

describes which experiment action (run, print) to take, the query

execution types (cold, warm, cold_continuous) and number of rep-

etitions per type, the query repetition timeout and total timeout

for all repetitions, the delay period for synchronous clearing of

system caches, the function to use for aggregating execution times

and the policy to follow when a cold execution times out. The non-

default print action triggers a pseudo-execution which generates

the ground queryset for inspection purposes.

Workload (compact form). The entity Workload, in Figure 3, rep-
resents the compact form of the benchmark experiment description:

dataset + queryset + execution specification.

Experiment Environment. This group includes all experiment

platform dependent components.

Operating system. The entity OS, in Figure 3, represents the

host’s operating system and features a name, the shell command

path, the commands for synchronizing cached data to persistent

storage and the one for fully clearing caches (pagecache, dentries

and inode).

Host. The entity Host, in Figure 3, represents the hardware plat-

form where the benchmark experiment is taking place. It has the

host name, the operating system, IP address, total RAM (GBs), the

base path for the actual dataset files, the base path for RDF store

6
Independent queries, each run several times with cold or warm caches.

7
Not shown in Figure 3 for simplicity reasons.

8
A sequence of queries representing a case scenario, that is run repeatedly as a whole.

5

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

repository files and the base path for the default reports and statis-

tics.

Report sink. The entity ReportSink, in Figure 3, describes the

experiment result report store, where the customized reports and

statistics will be sent. The default report store is a PostgreSQL JDBC

implementation and has as properties, the driver name, hostname,

alternate hostname, port, database name, user and password. Al-

ternate hostname allows for having a fall-back database where

results from extremely long running experiments can be saved.

The PostgreSQL report store has as default behavior the deferred

insertions for query execution results, that involves an experiment

result collector which flushes results upon experiment termination.

In this way, we avoid synchronous result insertions to the report

sink, which would be disrupted by the repetitive restarts of the

database component for SUTs using the same DBMS as the report

sink. A second lighter option is the H2 embedded database which

offers synchronous experiment result recording. In both cases, the

target report sink database schema is generated with the help of

the runtime-bundled database generation SQL script.

Logging or Report specification. The entity LoggingSpec, in
Figure 3, allows customization of the number of resultset entries

to be logged during the query execution scanning phase of the

Experiment Executor. A positive non zero integer value allows

for a sample of the results returned by each query to be recorded

in the experiment log and can be used as a proof of concept that

a system performs accurately or similar to other systems. Such a

setting is useful in early benchmarking phases and can help identify,

early on, issues with disabled plugins, external libraries, or with

incorrect results by non-compliant function behavior. A zero value,

on the other hand, allows for very accurate calculation of the query

response time and is useful in the final benchmarking phase.

4.1.2 Systems and SUTs. In Figure 4, the parent concepts of system

and system under test (SUT) components only, are also part of

the Abstract API. The entity System represents an RDF framework

independent geospatial semantic store and more specifically the

repository aspect of it. It is described by a map of properties and

their values, such as repository location and name, system rele-

vant namespace prefixes, as well as various indexing parameters.

It also has a connection property which allows query execution

and a flag to denote whether the store has been initialized. The

entity SystemUnderTest on the other hand represents the combina-

tion of a System with its optional application and database server

components, represented by AppServer and DbServer respectively.

On the implementation level, the Abstract API comprises two

layers: (i) the Geospatial System Abstraction Layer, which is depicted

in the lower left two hierarchy levels of Figure 5, and (ii) the System

Under Test (SUT) Abstraction Layer, which is the lower right level

of the same figure, both of which are explained below.

Geospatial System Abstraction Layer. This layer comprises one

interface that describes a geospatial RDF store and one ab-

stract class that implements the RDF framework independent

common functionality. The Geospatial Graph System Interface

(IGeographicaSystem), is a contract that requires functions

for: setting a map of system properties, system initialization,

system termination and a function that returns system-specific

namespace prefix mappings. The Base Abstract Implementation

(AbstractGeographicaSystem) of IGeographicaSystem, is an

abstract class that uses generics and encapsulates the system prop-

erties map, the initialization status, the generic repository “connec-

tion”, which is RDF Framework specific and the skeleton function-

ality to handle these. This generic “connection” corresponds to an

appropriate RDF Framework abstraction that allows creating query

instances on a system repository.

System Under Test (SUT) Abstraction Layer. This layer comprises

the generic Geospatial Graph SUT Interface (ISUT), which is a con-

tract that requires functions for: retrieving the host, the generic

“system”, execution and report specifications, starting and terminat-

ing the application and database server, making system dependent

translations of the queryset and executing timed queries.

4.2 RDF Framework Specific APIs

The second part of the core API, on the conceptual level, is depicted

in part of Figure 4 which includes the specializations of system and

SUT. In a similar manner, system and SUT concepts have three child

entities to model the corresponding three RDF framework specific

concepts: RDF4JBasedSystem, JenaBasedSystem, SesameBasedSys-

tem, RDF4JBasedSUT, JenaBasedSUT and SesameBasedSUT.

On the implementation level, this part comprises: (i) the RDF

Framework Specific System Layer, which is depicted by the left side

of “RDF Framework Implementation” level of Figure 5, and (ii) the

RDF Framework Specific SUT Layer, which is the right side of the

same level, both of which are explained below.

4.2.1 RDF Framework Specific System Layer. This layer consists
of three specializations of the AbstractGeographicaSystem class,

one for each RDF framework supported by the GeoRDFBench

runtime. Each class grounds the generic “connection” to the most

appropriate interface or class of the RDF framework it implements.

Since each framework has more than one major release, which

commonly break backward compatibility, the exact version of each

RDF framework supported by the runtime was based on its usage

by RDF graph stores. The three specialization classes are:

Sesame API (SesamePostGISBasedGeographicaSystem). Most scalable

RDF solutions based on Sesame, use v2.6.x since support of the

RDBMS Sail was deprecated after that. This Sail allowed graph

stores to tap, among other things, into geospatial and other capa-

bilities provided by well known DBMSs’ such as PostgreSQL with

PostGIS. Therefore, this implementation adds: host, port, database

name, user and password, to the system properties map and handles

them appropriately. The generic “connection” type is replaced with

class:

org.openrdf.repository.sail.SailRepositoryConnection

RDF4J API (RDF4JBasedGeographicaSystem). Version 4.3.15 was se-

lected since is widely supported by all contemporary systems. This

implementation focuses on the NativeStore Sail and adds the repos-

itory base directory, repository name and indexes used. The generic

“connection” type is replaced with interface:

org.eclipse.rdf4j.repository.RepositoryConnection

6

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

Figure 5: Systems & SUT Class Hierarchies

JenaAPI (JenaBasedGeographicaSystem). Only JenaGeoSPARQL uses

this API, we simply chose a recent and frequently used Jena ver-

sion in Maven Central [44] , from the latest stable branch, which

was 4.10.0. Jena Tuple Database (TDB2) [53] was preferred as the

persistent storage option as it is more robust and can handle large

update transactions. This implementation adds the repository base

directory, repository name and injects the transaction functional-

ity in the system initialization and termination code. The generic

“connection” type is replaced with interface:

org.apache.jena.rdf.model.Model

4.2.2 RDF Framework Specific SUT Layer. This layer comprises

three base implementations of the ISUT interface with correspond-

ing abstract classes: SesamePostGISBasedSUT, RDF4JBasedSUT
and JenaBasedSUT. Each class among other things handles the

details of initialization and termination of system, application and

database server components of the SUT either as a whole or on

a component basis. They also invoke system-specific query trans-

lations, manage and monitor query execution which takes place

in a separate thread, such as enabling timeout for the executing

query and handling customized exceptions thrown by different RDF

frameworks during the query evaluation phases.

4.3 Experiment Executor

The executor comprises the concrete Experiment and abstract

RunSUTExperiment classes. The subclasses of RunSUTExperiment
that RDF modules have to implement are the entry points for all

experiment run scripts. The RunSUTExperiment, parses the script
arguments that describe which JSON specifications (see Figure 2)

need to be deserialized into experiment component instances, ap-

plies queryset filter if needed, configures the SUT with the above

and finally launches the Experiment run loop. Two actions, per-

formed at the experiment construction time, are the namespace

prefix map merging between the corresponding maps of the sys-

tem, dataset and queryset along with system dependent queryset

rewrites in case non standard vocabularies are used offering similar

functionality.

4.4 JSON Specification Generator

This runtime component is a collection of runnable utility classes

with no parameters, one for each experiment component type,

which create all the specifications necessary to run the Geographica

2 benchmark. This geospatial benchmark employs the majority of

dataset, queryset and execution specifications’ types. These JSON

specifications are part of the project build tree and are readily

available to the user.

The detailed component type hierarchies, create the need to han-

dle many polymorphic instances which must be properly serialized,

otherwise it will be impossible to deserialize them. For this purpose,

the Jackson [17] JSON library is used to annotate interfaces and

class hierarchies to simplify serialization and deserialization.

5 JSON Generator API - By Example

In this section, we demonstrate the use of the runtime JSON gener-

ator API for generating the detailed form for benchmark specifica-

tions, using as test case, the Scalability workload of the Geographica

2 GeoSPARQL benchmark.

Scalability Workload Description. This workload (see Table 1) is

intended to evaluate geospatial RDF store scalability against increas-

ingly larger real-world datasets with many complex geometries.

There are 6 workload variants, each comprising one dataset with

increasing number of triples (10K, 100K, 1M, 10M, 100M, 500M), a

set with either 3 spatial function queries (1 selection and 2 joins)

or with 3 equivalent spatial predicate queries
9
and a common ex-

periment execution model. The execution model defines that each

query shall be executed 3 times with COLD caches, 3 times with

WARM caches and that the median of the 3 execution times shall be

considered as the result for COLD andWARM executions. The max-

imum timeout period for each query is set to 24 hours and in case a

query’s COLD execution fails then all remaining COLD and WARM

executions should be skipped. A 5000 msec delay is also specified

after clearing caches and waiting for garbage collection. The below

code samples demonstrate how to generate three different types

of specifications, serialize them to JSON files and then deserialize

them from the same files. Listing 6 encodes all the above.

Table 1: Geographica 2 Scalability workloads

Workload Dataset Queryset Execution Spec

Scalability 10K scalability_10K

scalabilityFunc

or

scalabilityPred

scalability

Scalability 100K scalability_100K

Scalability 1M scalability_1M

Scalability 10M scalability_10M

Scalability 100M scalability_100M

Scalability 500M scalability_500M

5.1 Dataset generation

The following code creates the scalability_10K complex dataset

specification object.

9
Systems, such as GraphDB and Parliament, use their spatial index only with spatial

predicates.

7

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

Listing 1: Generate Dataset Specification

public static GeographicaDS newScalabilityDS() {
// create a simple dataset object with a single N-Triples file
GenericGeospatialSimpleDS sds

= new GenericGeospatialSimpleDS("scalability_10K", // simple dataset name
"Scalability/10K", // relative directory where the file resizes
"scalability_10K.nt", NTRIPLES_STR); // the triples file

// add to it any namespace prefixes used in the dataset file
sds.addUsefulNamespacePrefix("lgo", "<http://data.linkedeodata.eu/ontology#>");
// add to it any property used in the dataset that denotes feature geometry
sds.addHasGeometry("scalabilityHasGeometry",

"<http://www.opengis.net/ont/geosparql#hasGeometry>");
// add to it any property used in the dataset that denotes WKT serialization
sds.addAsWKT("scalabilityAsWKT", "<http://www.opengis.net/ont/geosparql#asWKT>");
// create a complex dataset object with a single simple dataset object
GeographicaDS gds =

GeographicaDS(sds, // the simple dataset
"", // context/graph IRI for the simple dataset
0); // synthetic dataset scaling factor, 0 for non synthetic datasets

// serialize the complex dataset specification object to a JSON file
gds.serializeToJSON(new File(SCALABILITY_JSONDEF_FILE));
// deserialize a complex dataset objet from a JSON file and return it
return DataSetUtil.deserializeFromJSON(SCALABILITY_JSONDEF_FILE);

}

The complex dataset comprises an N-Triples simple dataset file.

Listing 2: Serialized Dataset Specification

{ "classname" : "gr.uoa.di.rdf.Geographica3.runtime.datasets.complex.impl.GeographicaDS",
"name" : "scalability_10K",
"relativeBaseDir" : "Scalability/10K",
"simpleGeospatialDataSetList" : [{

"name" : "scalability_10K",
"relativeBaseDir" : "Scalability/10K",
"dataFile" : "scalability_10K.nt",
"rdfFormat" : "N-TRIPLES",
"mapUsefulNamespacePrefixes" : {

"geo" : "<http://www.opengis.net/ont/geosparql#>",
"rdf" : "<http://www.w3.org/1999/02/22-rdf-syntax-ns#>",
"owl" : "<http://www.w3.org/2002/07/owl#>",
"geof" : "<http://www.opengis.net/def/function/geosparql/>",
"lgo" : "<http://data.linkedeodata.eu/ontology#>",
"xsd" : "<http://www.w3.org/2001/XMLSchema#>",
"rdfs" : "<http://www.w3.org/2000/01/rdf-schema#>",
"geo-sf" : "<http://www.opengis.net/ont/sf#>"

},
"mapAsWKT" : {

"scalabilityAsWKT" : "<http://www.opengis.net/ont/geosparql#asWKT>"
},
"mapHasGeometry" : {

"scalabilityHasGeometry" : "<http://www.opengis.net/ont/geosparql#hasGeometry>"
}

}],
"mapDataSetContexts" : {

"scalability_10K" : ""
},
"n" : 0}

5.2 Queryset generation

Wealso generate the first variant of the queryset, scalabilityFunc,
which uses spatial functions.

Listing 3: Generate Queryset Specification

public static StaticTempParamQS newScalabilityFuncQS() {
// read fixed Polygon from external file which is used in spatial selection query
String givenPolygon = readFile(SCALABILITY_EUROPE_POLYGON_FILE);
// initialize the map of useful general RDF related prefixes
Map<String, String> mapUsefulNamespacePrefixes = new HashMap<>();
// initialize the map of template parameters
Map<String, String> mapTemplateParams = new HashMap<>();
mapTemplateParams.put("FUNCTION", "sfIntersects");
mapTemplateParams.put("GIVEN_SPATIAL_LITERAL", givenPolygon);
// populate Graph prefixes map
Map<String, String> mapLiteralValues = new HashMap<>();
// populate template queries map
Map<Integer, IQuery> mapQry = new HashMap<>();
mapQry.put(0, new SimpleQuery("SC1_Geometries_Intersects_GivenPolygon",

"SELECT ?s1 ?o1 WHERE { \n ?s1 geo:asWKT ?o1 . \n FILTER(geof:FUNCTION(?o1,
GIVEN_SPATIAL_LITERAL)). \n} \n",

false));
mapQry.put(1, new SimpleQuery("SC2_Intensive_Geometries_Intersect_Geometries",

"SELECT ?s1 ?s2 \nWHERE { \n ?s1 geo:hasGeometry [geo:asWKT ?o1] ;\n lgo:has_code
\"1001\"^^xsd:integer . \n ?s2 geo:hasGeometry [geo:asWKT ?o2] ;\n lgo:has_code
?code2 . \n FILTER(?code2>5000 && ?code2<6000 && ?code2 != 5260) .\n
FILTER(geof:FUNCTION(?o1, ?o2)). \n} \n",

false));
mapQry.put(2, new SimpleQuery("SC3_Relaxed_Geometries_Intersect_Geometries",

"SELECT ?s1 ?s2\nWHERE {\n ?s1 geo:hasGeometry [geo:asWKT ?o1] ;\n lgo:has_code
\"1001\"^^xsd:integer .\n ?s2 geo:hasGeometry [geo:asWKT ?o2] ;\n lgo:has_code ?code2
.\n FILTER(?code2 IN (5622, 5601, 5641, 5621, 5661)) .\n FILTER(geof:FUNCTION(?o1,
?o2)).\n} \n",

false));
StaticTempParamQS scalabilityQS =

new StaticTempParamQS("scalabilityFunc", "", false, mapQry,
mapTemplateParams, mapUsefulNamespacePrefixes, mapLiteralValues);

// serialize the queryset specification object to a JSON file
scalabilityQS.serializeToJSON(new File(SCALABILITY_FUNC_JSONDEF_FILE));
// deserialize a queryset objet from a JSON file and return it
return QuerySetUtil.deserializeFromJSON(SCALABILITY_FUNC_JSONDEF_FILE);

}

We are using the StaticTempParamQS subclass which allows

the user to model querysets with or without template parameters

but with fixed parameter values for all queries.

Listing 4: Serialized Queryset Specification

{ "classname" : "gr.uoa.di.rdf.Geographica3.runtime.querysets.complex.impl.StaticTempParamQS",
"name" : "scalabilityFunc",
"relativeBaseDir" : "",
"hasPredicateQueriesAlso" : false,
"mapQueries" : {

"0" : {
"label" : "SC1_Geometries_Intersects_GivenPolygon",
"text" : "SELECT ?s1 ?o1 WHERE { \n ?s1 geo:asWKT ?o1 . \n FILTER(geof:FUNCTION(?o1,

GIVEN_SPATIAL_LITERAL)). \n} \n",
"usePredicate" : false,
"expectedResults" : -1

},
"1" : {

"label" : "SC2_Intensive_Geometries_Intersect_Geometries",
"text" : "SELECT ?s1 ?s2 \nWHERE { \n ?s1 geo:hasGeometry [geo:asWKT ?o1] ;\n

lgo:has_code \"1001\"^^xsd:integer . \n ?s2 geo:hasGeometry [geo:asWKT ?o2] ;\n
lgo:has_code ?code2 . \n FILTER(?code2>5000 && ?code2<6000 && ?code2 != 5260) .\n
FILTER(geof:FUNCTION(?o1, ?o2)). \n} \n",

"usePredicate" : false,
"expectedResults" : -1
},

"2" : {
"label" : "SC3_Relaxed_Geometries_Intersect_Geometries",
"text" : "SELECT ?s1 ?s2\nWHERE {\n ?s1 geo:hasGeometry [geo:asWKT ?o1] ;\n lgo:has_code

\"1001\"^^xsd:integer .\n ?s2 geo:hasGeometry [geo:asWKT ?o2] ;\n lgo:has_code
?code2 .\n FILTER(?code2 IN (5622, 5601, 5641, 5621, 5661)) .\n
FILTER(geof:FUNCTION(?o1, ?o2)).\n} \n",

"usePredicate" : false,
"expectedResults" : -1

}
},
"mapUsefulNamespacePrefixes" : { },
"mapTemplateParams" : {

"GIVEN_SPATIAL_LITERAL" : "\"POLYGON((23.708496093749996 37.95719224376526,22.906494140625
40.659805938378526,11.524658203125002 48.16425348854739,-0.1181030273437499
51.49506473014367,-3.2189941406250004 55.92766341247031,-5.940856933593749
54.59116279530599,-3.1668090820312504 51.47967237816337,23.708496093749996
37.95719224376526))\"^^<http://www.opengis.net/ont/geosparql#wktLiteral>",

"FUNCTION" : "sfIntersects"
},
"mapGraphPrefixes" : { } }

5.3 Execution spec generation

The following code generates the Scalability execution specification

object.

Listing 5: Generate Execution Specification

public static SimpleES newScalabilityES() {
// create a map with no of executions per execution type
Map<ExecutionType, Integer> execTypeReps = new HashMap<>();
execTypeReps.put(ExecutionType.COLD, 3);
execTypeReps.put(ExecutionType.WARM, 3);
// create a simple execution specification object
SimpleES sses = new SimpleES(execTypeReps,

24 * 60 * 60, // 24 hours max duration per query execution
7 * 24 * 60 * 60, // 7 days max duration for the experiment
Action.RUN, // run experiments instead or printing ground queryset
AverageFunction.QUERY_MEDIAN, // use median instead of mean
BehaviourOnColdExecutionFailure.SKIP_REMAINING_ALL_QUERY_EXECUTIONS,
5000); // 5000 msecs delay for clearing caches and garbage collection

// serialize the execution specification object to a JSON file
sses.serializeToJSON(new File(SCALABILITYEXECUTIONSPECJSONDEF_FILE));
// deserialize an execution spec object from a JSON file and return it
return ExecutionSpecUtil.deserializeFromJSON(SCALABILITYEXECUTIONSPECJSONDEF_FILE);

}

8

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

The below serialized representation fully describes the experiment

execution model in Scalability Workload Description presented ear-

lier in this section.

Listing 6: Serialized Execution Specification

{ "classname" : "gr.uoa.di.rdf.Geographica3.runtime.executionspecs.impl.SimpleES",
"execTypeReps" : {

"COLD" : 3,
"WARM" : 3

},
"maxDurationSecsPerQueryRep" : 86400,
"maxDurationSecs" : 604800,
"action" : "RUN",
"avgFunc" : "QUERY_MEDIAN",
"onColdFailure" : "SKIP_REMAINING_ALL_QUERY_EXECUTIONS",
"clearCacheDelaymSecs" : 5000}

In a similar manner, the user can generate the experiment en-

vironment specifications: host, operating system, report sink and

logging. At this point we should remind that, as it was envisioned

by design, the trivial method of copying and modifying an existing

specification file with a standard text editor, will probably suffice

for many use cases, once a library of JSON specifications is already

available. Both methods of generating specifications are depicted

in the upper part of Figure 2.

For an example of generating the compact form of a benchmark

specification, the user can refer to GeoRDFBench Framework Sam-

ples [24] application that is using as test case, the LUBM benchmark

for SPARQL.

6 Experimental Evaluation

In this section, we present the process of running some of the

Geographica 2 [29] benchmark scalability experiments with the

help of the GeoRDFBench framework and present the results. The

experiment environment, benchmark description and execution

details are presented below.

6.1 Environment

Host Hardware. The hardware platform for the experiments was

an Intel NUC8i7BEH box, Ubuntu 22.04.5 LTS with 32GB DDR4-

2400MHz, a Samsung SSD NVMe 970 EVO Plus 500GB system disk

and a secondary data disk Western Digital WDC WD20SPZX-75U

2TB mounted on /data. Both filesystems / and /data were format-

ted as “ext4”. All SUTs and their repository data were intentionally

placed under the slower /data filesystem.

Installed Software. Virtuoso and GraphDB required that we in-

stall the corresponding server software under /data. In addi-

tion PostgreSQL v14.17 with PostGIS v3.2 was also installed,

since Strabon requires it for creating spatial databases. The

PostgreSQL “data_directory” was set in /data/pgdata/data.
The branch releases/2.0.0-M1 of GeoRDFBench was used in

/data/geordfbench. The project came ready with prebuilt bina-

ries. The report sink schema was left to be automatically created

by the first system to run experiments. Manually creating the same

schema is provided through the scripts/geordfbench.sql script.

System-Version Selection. Some RDF modules included in GeoRDF-

Bench allow, without effort, testing system configuration variations.

In view of this, we chose the following seven (7) systems and

system variations to participate in this demonstration: (i) GraphDB

v10.8.5, (ii) GraphDB v10.8.5 with GeoSPARQL plugin enabled,

quad prefix tree indexing algorithm and 11 precision value (iii)

RDF4J v4.3.15, (iv) RDF4J v4.3.15 with Lucene Sail enabled for

spatial indexing (v) Openlink Virtuoso Open Server (VOS) v7.2.14
(vi) Jena GeoSPARQL v4.10.0 and (vii) Strabon v3.3.3-SNAPSHOT.
Additionally, we tested the second GraphDB variant against two

versions of the querysets: (i) with spatial functions which is the

default for all systems and (ii) with spatial predicates, to exhibit the

different optimization paths followed and the importance of testing

all these alternatives offered for properly benchmarking spatially

enabled RDF stores. We were not provided with a license renewal

for Stardog
10

therefore we were unable to run experiments with the

latest v8.2.2 of the module which is included with GeoRDFBench.

However, we do include it in the description of other aspects of the

benchmarking process.

Since each GeoRDFBench RDF module is a Java client to an RDF

store (embedded or standalone server) the current implementations

use a Java RDF Framework library to instrument the stores. We

currently have GraphDB, RDF4J and Virtuoso using Eclipse RDF4J,

Jena GeoSPARQL uses Apache Jena while Strabon uses OpenRDF

Sesame.

Table 2: Scalability datasets basic characteristics

Dataset # of Features # of Points # of Lines # of Polygons

10K 1,135 587 0 900

100K 12,166 6,623 4,239 2,531

1M 118,161 46,781 45,238 29,200

10M 1,038,739 317,865 328,630 427,842

100M 10,259,959 904,677 2,058,386 7,553,440

500M 48,623,878 5,520,767 15,771,932 23,390,220

6.2 Benchmark description

The following experiment aims both at studying performance char-

acteristics of the SUTs but more importantly exhibiting the usage of

GeoRDFBench for running benchmarks. We chose the 10K, 100K

and 1M variants of the Scalability workload (see Table 1) where

the respective datasets contain 10K, 100K and 1M triples. All share

the same queryset which comprises three queries: (i) a spatial se-

lection SC1, (ii) a low selectivity (heavy) spatial join SC2 and (iii)

a higher selectivity (lighter) spatial join SC3. The queryset is an

instance of the StaticTempParamQS class with one template pa-

rameter, which represents a file persisted polygon replaced during

queryset instantiation, used in the spatial filter of query SC1. The

basic characteristics of the datasets (e.g., features and geometries)

are described in Table 2.

The following listing shows the ground spatial function queryset

for RDF4J:

Listing 7: RDF4J Ground Spatial Function Queries & Prefix Header

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geo-sf: <http://www.opengis.net/ont/sf#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX lgo: <http://data.linkedeodata.eu/ontology#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Query 0 - SC1_Geometries_Intersects_GivenPolygon:

10
Stardog requires a license otherwise experiments fail.

9

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

SELECT ?s1 ?o1 WHERE {
?s1 geo:asWKT ?o1 .
FILTER(geof:sfIntersects(?o1, "POLYGON((23.708496093749996 37.95719224376526,

... 37.95719224376526))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>)).
}
Query 1 - SC2_Intensive_Geometries_Intersect_Geometries:
SELECT ?s1 ?s2 WHERE {

?s1 geo:hasGeometry [geo:asWKT ?o1] ;
lgo:has_code "1001"^^xsd:integer .

?s2 geo:hasGeometry [geo:asWKT ?o2] ;
lgo:has_code ?code2 .

FILTER(?code2>5000 && ?code2<6000 && ?code2 != 5260) .
FILTER(geof:sfIntersects(?o1, ?o2)).

}
Query 2 - SC3_Relaxed_Geometries_Intersect_Geometries:
SELECT ?s1 ?s2 WHERE {

?s1 geo:hasGeometry [geo:asWKT ?o1] ;
lgo:has_code "1001"^^xsd:integer .

?s2 geo:hasGeometry [geo:asWKT ?o2] ;
lgo:has_code ?code2 .

FILTER(?code2 IN (5622, 5601, 5641, 5621, 5661)) .
FILTER(geof:sfIntersects(?o1, ?o2)).

}

For comparison, the following listing shows the ground spatial

predicate queryset for GraphDB+P:

Listing 8: GraphDB Ground Spatial Predicate Queries & Prefix Header

PREFIX ext: <http://rdf.useekm.com/ext#>
...
Query 0 - SC1_Geometries_Intersects_GivenPolygon:
SELECT ?s1 ?o1 WHERE {

?s1 geo:asWKT ?o1 .
?s1 geo:sfIntersects "POLYGON((23.708496093749996 37.95719224376526,

... 37.95719224376526))"^^<http://www.opengis.net/ont/geosparql#wktLiteral> .
}
Query 1 - SC2_Intensive_Geometries_Intersect_Geometries:
SELECT ?s1 ?s2 WHERE {

?s1 geo:hasGeometry ?g1 ;
lgo:has_code "1001"^^xsd:integer .
?s2 geo:hasGeometry ?g2 ;
lgo:has_code ?code2 .
?g1 geo:sfIntersects ?g2 .
FILTER(?code2>5000 && ?code2<6000 && ?code2 != 5260) .

}
Query 2 - SC3_Relaxed_Geometries_Intersect_Geometries:
SELECT ?s1 ?s2 WHERE {

?s1 geo:hasGeometry ?g1 ;
lgo:has_code "1001"^^xsd:integer .
?s2 geo:hasGeometry ?g2 ;
lgo:has_code ?code2 .
?g1 geo:sfIntersects ?g2 .
FILTER(?code2 IN (5622, 5601, 5641, 5621, 5661)) .

}

GeoRDFBench, during experiment execution, automatically con-

structs the prefix header to include system, queryset and dataset spe-

cific namespace prefixes. For example, while Strabon headers do

not differ from the one presented above, the headers for GraphDB

and Virtuoso also include the following system-specific namespace

prefixes:

Listing 9: GraphDB & Virtuoso Prefix Header Differences

GraphDB adds a few useful GeoSPARQL extensions based on the USeekM library
PREFIX ext: <http://rdf.useekm.com/ext#>
Access to Virtuoso's built-in functions
PREFIX bif: <http://www.openlinksw.com/schemas/bif#>

To produce the ground queries of Listings 7 and 8 GeoRDFBench

conveniently takes the necessary steps. First, the template parame-

ters of the queries in Listing 4 are replaced with their values during

queryset deserialization. After that, it applies any system provided

query translations in order to create the ground queries. For example,

Stardog emulates the GeoSPARQL geof:sfIntersects function

with the combination of the non-standard geof:relate through
the negation of geo:disjoint as exhibited below for query SC1:

Listing 10: Stardog Queries SC1 Differences

Query 0 - SC1_Geometries_Intersects_GivenPolygon:
SELECT ?s1 ?o1 WHERE {

?s1 geo:asWKT ?o1 .
?relation geof:relate(?o1 "POLYGON((23.708496093749996 37.95719224376526,

... 37.95719224376526))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>) .
FILTER(?relation != geo:disjoint) . }

Such system dependent logic, which may include differ-

ent vocabularies, has been identified and implemented in

the corresponding translateQuery() function of the rele-

vant RDF Module SUTs for the user’s convenience and pro-

vide a more consistent and trouble free experience. Star-

dogSUT appropriately translates the unsupported GeoSPARQL

geof:sfWithin and geof:sfEquals functions. GraphDBSUT han-

dles the non-standard geof:sfEquals function behaviour. Virtu-

osoSUT maps geof:sfWithin, geof:buffer, geof:distance,
geof:sfEquals functions to bif:st_within, bif:st_point,
bif:st_distance, bif:st_within, the geo:wktLiteral data

type to virtrdf:Geometry and handles default distance unit dif-

ferences between functions.

The execution specification used for the scalability queryset is

the same as in Listing 6.

6.3 Experiment Executions

As explained, we have 7 systems to test, however two variants

of the scalability queryset need to run against the repositories of

the GeoSPARQL enabled GraphDB. Therefore there is a total of

eight (8) different system configurations to be tested against three

increasingly bigger workloads. Since each system configuration

needs to run against the three scalability workloads (10K, 100K,

1M) there are twenty four (24) experiment executions with

unique database ID, system configuration name and configuration

description are depicted in Table 3.

Table 3: System Configuration Experiments

ExpIDs ConfigName System ConfigDesc

1-3 RDF4J RDF4J v4.3.15

4-6 JenaGeoSPARQL Jena GeoSPARQL v4.10.0

7-9 GraphDB GraphDB v10.8.5

10,11,14 Virtuoso Virtuoso Open Server v7.2.14, 2D Rtree

15-17 GraphDB+ GraphDB + GeoSPARQL plugin v10.8.5, Quad-11

18-20 GraphDB+P GraphDB + GeoSPARQL plugin v10.8.5, Quad-11, Pred

21-23 RDF4J+ RDF4J + Lucene Sail v4.3.15, Lucene spatial index

31-33 Strabon Strabon 3.3.3-SNAPSHOT

GeoRDFBench provides the following common tools: (i) the en-

vironment preparation script geordfbench/scripts/prepareRunEn-

vironment.sh which prepares the environment variables for run-

ning the RDF Module specific scripts for a given host, (ii) the print

environment script geordfbench/scripts/printRunEnvironment.sh

which allows reviewing the environment variables previously set.

Each RDF Module provides the following scripts which have

largely the same functionality: (i) the repository generationwrap-

per scriptwhich creates all enabled repositories, imports RDF data

into them and spatially indexes them, (ii) the compact workload

run script which tests the system against the compact represen-

tation of a workload and (iii) the detailed workload run script

which tests the system against the detailed representation of a

workload.

The repository generation wrapper scripts require that the user

either provides all the required arguments for the system at hand

and host critical locations, or that the environment variables have

10

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

already been prepared with the environment preparation script, in

which case the single required boolean parameter denotes whether

to overwrite existing repositories or not. Each of these scripts comes,

already setup, with a list of repositories to create automatically. The

user, most frequently, will want to comment out the repositories

that are not required or add new repositories to them.

For the purpose of this work and to exhibit the use of these tools

we created a single very simple experiment execution script

for each one of the eight required executions. They basically call

upon the GeoRDFBench common and the system-specific scripts

in the correct order. They have an almost identical functionality

with few minor additions for special cases. The log files generated

by these scripts are three types: (i) envvars_<sys>.log which

record the environment variables reported by the print environ-

ment script, (ii) logCreateRepos_Scal10K_1M_<sys>.log which
store the repository generation wrapper script output and (iii)

RunWL<sys>Exp_Scal10K.log which record the compact or de-

tailed workload run script output. Below we see a compact (com-

ment and whitespace sanitized) version of RDF4J’s script:

Listing 11: RDF4J Experiment execution script

#!/bin/bash
CWD=`pwd`
cd /data/geordfbench/scripts
environment preparation script sets environment variables for RDF4JSUT and nuc8i7beh host
source prepareRunEnvironment.sh nuc8i7beh RDF4JSUT "CreateRepo_Scalability10K_1M_RDF4J"
print environment script logs environment variables for RDF4JSUT and nuc8i7beh host
./printRunEnvironment.sh >> /data/envvars_rdf4j.log

BASE_LOG_DIR=/data/LOGS
REPO_CREATION_LOG_DIR=${BASE_LOG_DIR}/RepoCreation/${ActiveSUT}
EXP_RUN_LOG_DIR=${BASE_LOG_DIR}/ExperimentRun/${ActiveSUT}
mkdir -p ${REPO_CREATION_LOG_DIR}; mkdir -p ${EXP_RUN_LOG_DIR}

cd ../RDF4JSUT/scripts/CreateRepos/
Enable 100K and 1M scalability dataset generation
sed -i -e 's@^levels=("10K")@levels=("10K" "100K" "1M")@g' createAllRDF4JRepos.sh
repository generation wrapper script creates repos, loads data, spatial indexs them
./createAllRDF4JRepos.sh false 2>&1 | tee -a

${REPO_CREATION_LOG_DIR}/logCreateRepos_Scal10K_1M_RDF4J.log

DateTimeISO8601=`date --iso-8601='date'` # Record current date
cd ../RunTests3/
compact workload run script runs RDF4J against the Scalability 10K workload
./runWLTestsForRDF4JSUT.sh -Xmx24g \
-rbd ${RDF4JRepoBaseDir//"${EnvironmentBaseDir}/"} -expdesc

${DateTimeISO8601}_RDF4JSUT_RunWL_Scal10K \
-wl ${GeoRDFBenchJSONLibDir}/workloads/scalabilityFunc10K_WLoriginal_GOLD_STANDARD.json \
-h ${GeoRDFBenchJSONLibDir}/hosts/nuc8i7behHOSToriginal.json \
-rs ${GeoRDFBenchJSONLibDir}/reportspecs/simplereportspec_original.json \
-rpsr ${GeoRDFBenchJSONLibDir}/reportsources/nuc8i7behHOSToriginal.json 2>&1 | tee -a

${EXP_RUN_LOG_DIR}/RunWLRDF4JExp_Scal10K.log
compact workload run script runs RDF4J against the Scalability 100K workload
compact workload run script runs RDF4J against the Scalability 1M workload
..

Excluding file and path locations, the difference of the experi-

ment execution script for RDF4J compared to RDF4J+ variant is the

line enabling the Lucene Sail, as shown below:

Listing 12: diff(RDF4J, RDF4J+) Experiment execution scripts

$ diff -U 1 runRDF4J_Scal10K_1M.sh runRDF4J_Lucene_Scal10K_1M.sh
...
@@ -4,4 +4,5 @@
source prepareRunEnvironment.sh nuc8i7beh RDF4JSUT "CreateRepo_Scalability10K_1M_RDF4J"
+ export EnableLuceneSail=true
./printRunEnvironment.sh >> /data/envvars_rdf4j.log
...

The difference between the GraphDB and GraphDB+ is also a

single line enabling the GeoSPARQL plugin which could require 2

more assignments if a different spatial algorithm and/or accuracy

were needed.

Listing 13: diff(GraphDB, GraphDB+) Experiment execution scripts

$ diff -U 1 runGraphDB_Scal10K_1M.sh runGraphDB_GeoSPARQL_Scal10K_1M.sh
...
@@ -3,2 +3,5 @@
source prepareRunEnvironment.sh nuc8i7beh GraphDBSUT "CreateRepo_Scalability10K_1M_GraphDB"
+ export EnableGeoSPARQLPlugin=true
+ # export IndexingAlgorithm = quad
+ # export IndexingPrecision = 11
./printRunEnvironment.sh >> /data/envvars_graphdb.log
...

6.4 Experiment log files

6.4.1 Environment variables log. There is one such log for each

system configuration. It has a homogeneous output layout which

comprises two sections. The first one contains environment vari-

ables common for all systems, such as, host name, IP address and

max memory, locations for dataset source files, standard output

results and GeoRDFBench installation-related. The second section

consists of system-specific variables such as, version number, server

installation (if present) and repositories’ locations. Below we see

part of the JenaGeoSPARQL output:

Listing 14: JenaGeoSPARQL Environment variables

All SUTs

Environment = NUC8I7BEH
EnvironmentBaseDir = /data
GeoRDFBenchScriptsDir = /data/geordfbench/scripts
GeoRDFBenchJSONLibDir = /data/geordfbench/json_defs
DatasetBaseDir = /data/Geographica2_Datasets
...
ResultsDirName = 531f9c1#_2025-04-26_JenaGeoSPARQLSUT_CreateRepo_Scalability10K_1M_JenaGeoSPARQL
ActiveSUT = JenaGeoSPARQLSUT
ExperimentDesc = 531f9c1#_2025-04-26_JenaGeoSPARQLSUT_CreateRepo_Scalability10K_1M_JenaGeoSPARQL
SystemMemorySizeInGB = 32 GBs
JVM_Xmx = -Xmx24g

JenaGeoSPARQL SUT

JenaBaseDir = /data/apache-jena-4.10.0
JenaGeoSPARQLRepoBaseDir = /data/JenaGeoSPARQL_4.10.0_Repos
Version = 4.10.0

6.4.2 Repository generation log. There is one such log for each

system configuration. It has the least homogeneous output since

each system’s preferred loader uses significantly different strategies

which are reflected in the output. Apart from very useful details

provided which may allow for fine-tuning each system, it provides

two key pieces of information which are the final repository size

and the required time to complete repository creation, data loading

and data indexing for all enabled repositories. Below we see part of

the RDF4JSUT+ output for the scalability_10K repository:

Listing 15: RDF4JSUT+ repository generation log

...
Running script with syntax:
./createAllRDF4JRepos.sh false /data/Geographica2_Datasets

/data/RDF4J_4.3.15_LuceneRepos/server -Xmx24g true 192.168.1.44 3333
/data/Geographica2_Datasets/Scalability/scalabilityDSGen.sh
/data/Geographica2_Datasets/Scalability/scalability500MRefDS.nt.gz

Script start time: Mon 28 Apr 2025 04:21:18 pm EEST
/data/RDF4J_4.3.15_LuceneRepos/server dir does not exist. Creating it now ...
Checking/Creating scalability 10K dataset ... Scalability 10K dataset already exists
Generating scalability 10K repository ...
./createRDF4JRepo.sh /data/RDF4J_4.3.15_LuceneRepos/server scalability_10K false "spoc,posc"

N-TRIPLES /data/Geographica2_Datasets/Scalability/10K -Xmx24g true
"http://www.opengis.net/ont/geosparql#asWKT" 192.168.1.44 3333

CREATE_REPO_ARGS = createman "/data/RDF4J_4.3.15_LuceneRepos/server" "scalability_10K" "FALSE"
"true" "spoc,posc" "http://www.opengis.net/ont/geosparql#asWKT"

LOAD_REPO_ARGS = dirloadman "/data/RDF4J_4.3.15_LuceneRepos/server" "scalability_10K"
"N-TRIPLES" "/data/Geographica2_Datasets/Scalability/10K" true

0 [main] INFO RDF4JSystem - No LocalRepositoryManager instance present, creating a new one.
68 [main] INFO RDF4JSystem - Creating NativeStore base sail with spoc,posc indexes and

forceSync = false
71 [main] INFO RDF4JSystem - Adding Lucene sail on top of NativeStore
73 [main] INFO RDF4JSystem - Lucene sail will spatially index properties:

http://www.opengis.net/ont/geosparql#asWKT

11

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

216 [main] INFO RDF4JSystem - Creating new repository object for repo id = scalability_10K
775 [main] INFO RDF4JSystem - Initialing new repository object for repo id = scalability_10K
835 [main] INFO RepoUtil - RDF4J created with manager lucene repo

"/data/RDF4J_4.3.15_LuceneRepos/server/repositories/scalability_10K" in 74 msecs
835 [main] INFO RDF4JSystem - Closing connection...
837 [main] INFO RDF4JSystem - Repository closed.
1 [main] INFO RDF4JSystem - Loading file scalability_10K.nt ...
2500 [main] INFO RDF4JSystem - Finished loading file scalability_10K.nt in 2492 msecs
2506 [main] INFO RepoUtil - RDF4J loaded with manager all files from

"/data/Geographica2_Datasets/Scalability/10K" to repo
"/data/RDF4J_4.3.15_LuceneRepos/server/repositories/scalability_10K" in 2599 msecs

2506 [main] INFO RDF4JSystem - Closing connection...
2508 [main] INFO RDF4JSystem - Repository closed.
RDF4J repository "/data/RDF4J_4.3.15_LuceneRepos/server/repositories/scalability_10K" has size:

7MB

6.4.3 Run workload log. Each such log concerns a single run of a

system against a workload. It has a quite homogeneous output lay-

outwhich comprises three sections. In the first section all arguments

are listed and validated, the JSON specifications are deserialized

to create the workload, host and system related components, the

system query timeout is set dynamically based on the execution

specification, if needed the queryset is translated according to the

system and the final namespace prefix header is formed by merging

dataset, queryset and system dependent prefixes. Below we see a

sanitized version of the first section for Virtuoso’s run against the

Scalability 1M workload:

Listing 16: Virtuoso run log start section for Scalability 1M

...
0 [main] INFO RunVirtuosoExperimentWorkload - args[0] = -surl
1 [main] INFO RunVirtuosoExperimentWorkload - args[1] = http://localhost:1111
1 [main] INFO RunVirtuosoExperimentWorkload - args[2] = -susr
1 [main] INFO RunVirtuosoExperimentWorkload - args[3] = dba
1 [main] INFO RunVirtuosoExperimentWorkload - args[4] = -spwd
1 [main] INFO RunVirtuosoExperimentWorkload - args[5] = dba
1 [main] INFO RunVirtuosoExperimentWorkload - args[6] = -rbd
2 [main] INFO RunVirtuosoExperimentWorkload - args[7] = virtuoso-opensource-7.2.14/repos
2 [main] INFO RunVirtuosoExperimentWorkload - args[8] = -expdesc
2 [main] INFO RunVirtuosoExperimentWorkload - args[9] = 2025-04-27_VirtuosoSUT_RunWL_Scal1M
2 [main] INFO RunVirtuosoExperimentWorkload - args[10] = -wl
2 [main] INFO RunVirtuosoExperimentWorkload - args[11] =

/data/geordfbench/json_defs/workloads/scalabilityFunc1M_WLoriginal.json
2 [main] INFO RunVirtuosoExperimentWorkload - args[12] = -h
2 [main] INFO RunVirtuosoExperimentWorkload - args[13] =

/data/geordfbench/json_defs/hosts/nuc8i7behHOSToriginal.json
2 [main] INFO RunVirtuosoExperimentWorkload - args[14] = -rs
2 [main] INFO RunVirtuosoExperimentWorkload - args[15] =

/data/geordfbench/json_defs/reportspecs/simplereportspec_original.json
2 [main] INFO RunVirtuosoExperimentWorkload - args[16] = -rpsr
2 [main] INFO RunVirtuosoExperimentWorkload - args[17] =

/data/geordfbench/json_defs/reportsources/nuc8i7behHOSToriginal.json
5 [main] INFO RunVirtuosoExperimentWorkload - |==> Experiment related options
9 [main] INFO RunVirtuosoExperimentWorkload - Experiment description:

2025-04-27_VirtuosoSUT_RunWL_Scal1M
9 [main] INFO RunVirtuosoExperimentWorkload - |==> Workload, Host, Report related options
9 [main] INFO RunVirtuosoExperimentWorkload - Workload specs configuration JSON file:

/data/geordfbench/json_defs/workloads/scalabilityFunc1M_WLoriginal.json
10 [main] INFO RunVirtuosoExperimentWorkload - List of queries to include in the run: all
10 [main] INFO RunVirtuosoExperimentWorkload - Host configuration JSON file:

/data/geordfbench/json_defs/hosts/nuc8i7behHOSToriginal.json
10 [main] INFO RunVirtuosoExperimentWorkload - Report specs configuration JSON file:

/data/geordfbench/json_defs/reportspecs/simplereportspec_original.json
11 [main] INFO RunVirtuosoExperimentWorkload - Report source specs configuration JSON file:

/data/geordfbench/json_defs/reportsources/nuc8i7behHOSToriginal.json
11 [main] INFO RunVirtuosoExperimentWorkload - |==> Repository/Store options
11 [main] INFO RunVirtuosoExperimentWorkload - Virtuoso Server endpoint URL:

http://localhost:1111
11 [main] INFO RunVirtuosoExperimentWorkload - Virtuoso server username: dba
12 [main] INFO RunVirtuosoExperimentWorkload - Virtuoso server password: dba
12 [main] INFO RunVirtuosoExperimentWorkload - |==> System options
12 [main] INFO RunVirtuosoExperimentWorkload - BaseDir: virtuoso-opensource-7.2.14/repos
284 [main] INFO RunVirtuosoExperimentWorkload - {SimpleGeospatialWL: ScalabilityFunc, ,
{GeographicaDS: scalability_1M, Scalability/1M,
{GenericGeospatialSimpleDS: scalability_1M, N-TRIPLES}}
{StaticTempParamQS: scalabilityFunc, ,false, SimpleES{ COLD=3, WARM=3, action=RUN,

maxduration=604800 secs, repmaxduration=86400 secs, func=QUERY_MEDIAN }}}
590 [main] INFO RDF4JBasedSUT - Reading VirtuosoSUT properties from file :

jar:file:/data/geordfbench/VirtuosoSUT/target/VirtuosoSUT-2.0.0-SNAPSHOT.jar!/virtuoso.properties
603 [main] INFO VirtuosoSUT - Initializing..
603 [main] INFO VirtuosoSUT - Starting Virtuoso server...
15634 [main] INFO VirtuosoSystem - Uninitialized VirtuosoRepository created with query timeout

= 0
15634 [main] INFO VirtuosoSystem - Initialized VirtuosoRepository has query timeout = 86400
...
15713 [main] INFO ExperimentWorkload - VirtuosoSystem-dependent translation of the queryset

scalabilityFunc
15713 [main] INFO ExperimentWorkload - VirtuosoSystem-dependent namespace prefixes merged with

the prefixes of queryset scalabilityFunc
15714 [main] INFO VirtuosoSUT - Closing..

15715 [main] INFO VirtuosoSystem - Closing connection...
15715 [main] INFO VirtuosoSystem - Repository closed.
20728 [main] INFO VirtuosoSUT - Stopping Virtuoso server...

In the second section, we find the details of each query execution

step. It begins by executing the first iteration of the first query SC1

with COLD caches. The full query to be executed is displayed, the

system caches are cleared since a COLD cache execution has been

requested and after a few second delay for Java garbage collection,

the experiment launches an RDF4JbasedExecutor instance in a

new thread for executing the query in a time constrained manner.

The child process reports back every 6 hours (21600000 msecs)

which is the 25% of the total query timeout (24 hours)
11

specified

in the scalability execution specification. The executor reports all

state transitions for the query execution and during the scanning

phase reports the first 3 results of the resultset according to the

args(15) = simplereportspec_original.json logging specifi-

cation. Before exiting, the executor reports that it completed with

no errors (COMPLETED-NONE), the query evaluation, scanning

and total time in nano seconds, the number of results in the re-

sultset, the number of scan errors
12

and that the accuracy could

not be verified, because the queryset specification provided did not

include the expected number of results for this query. In Listing 18

we see a sanitized version of the second iteration of the execution

of query SC2 (no 1) with COLD caches against the Scalability 100K

workload.

Listing 17: Virtuoso run log SC2 COLD Scalability 100K

115549 [main] INFO ExperimentWorkload - |==> Executing query [1,
SC2_Intensive_Geometries_Intersect_Geometries] (COLD, 1):

PREFIX bif: <http://www.openlinksw.com/schemas/bif#>
...
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?s1 ?s2
WHERE {
?s1 geo:hasGeometry [geo:asWKT ?o1] ;
lgo:has_code "1001"^^xsd:integer .
?s2 geo:hasGeometry [geo:asWKT ?o2] ;
lgo:has_code ?code2 .
FILTER(?code2>5000 && ?code2<6000 && ?code2 != 5260) .
FILTER(geof:sfIntersects(?o1, ?o2)).
}
...
120969 [main] INFO UbuntuJammyOS - Caches cleared after delay of 5000 msecs
120970 [main] INFO VirtuosoSUT - Starting Virtuoso server...
133318 [main] INFO VirtuosoSystem - Initialized VirtuosoRepository has query timeout = 86400
133352 [main] INFO VirtuosoSUT - Starting QueryExecutor thread
133353 [main] INFO VirtuosoSUT - Waiting for QueryExecutor thread to finish
133353 [main] INFO VirtuosoSUT - Timeout progress step is 21600000 msecs
133353 [Thread-5] INFO QueryRepResult - Transitioning (NOTSTARTED => STARTED)
133354 [Thread-5] INFO QueryRepResult - Transitioning (STARTED => PREPARING)
133355 [Thread-5] INFO QueryRepResult - Transitioning (PREPARING => EVALUATING)
135404 [Thread-5] INFO QueryRepResult - Transitioning (EVALUATING => EVALUATED)
135405 [Thread-5] INFO RDF4JbasedExecutor - s1 s2
135405 [Thread-5] INFO RDF4JbasedExecutor - ------------------------------------>
135405 [Thread-5] INFO QueryRepResult - Transitioning (EVALUATED => SCANNING)
135405 [Thread-5] INFO RDF4JbasedExecutor -

http://data.linkedeodata.eu/osm/wales/places/id/335184
http://data.linkedeodata.eu/osm/wales/transport/id/123360606

135405 [Thread-5] INFO RDF4JbasedExecutor -
http://data.linkedeodata.eu/osm/wales/places/id/335184
http://data.linkedeodata.eu/osm/wales/transport/id/123360628

135405 [Thread-5] INFO RDF4JbasedExecutor -
http://data.linkedeodata.eu/osm/wales/places/id/335184
http://data.linkedeodata.eu/osm/wales/transport/id/1396066034

135766 [Thread-5] INFO QueryRepResult - Transitioning (SCANNING => SCANNED)
135766 [Thread-5] INFO RDF4JbasedExecutor - <------------------------------------
135766 [Thread-5] INFO QueryRepResult - Transitioning (SCANNED => COMPLETED)
135766 [main] INFO VirtuosoSUT - Percentage of expired timeout is 0.0 %
135776 [main] INFO ExperimentWorkload - |<== Executed query [1,

SC2_Intensive_Geometries_Intersect_Geometries] (COLD, 1): <COMPLETED-NONE> 2050015972 +
360751232 = 2410767204 nsecs, 239 results, 0 scan errors - ACCURACY NOT DETERMINED

11
The Scalability query timeout is very high because of the very high query response

times in the 500M dataset.

12
Usually due to invalid geometries or unsupported operators.

12

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

In the third section, we have the result collector’s actions which

involves flushing the [2 cache types * 3 queries * 3 iterations
= 18] cached results in the report sink (PostgreSQLwrites in geordf-
bench database in deferred mode, while in H2 results are written in

synchronous mode). The collector also generates the standard result

and statistics files in the file system and finally reports the gross

script run time. A reduced version of the Virtuoso’s run against the

Scalability 10K workload is shown below:

Listing 18: Virtuoso run log Scalability 10K results

289581 [main] INFO PostgreSQLRepSrc - Deferred mode for PostgreSQLRepSrc was enabled. 18
records were flushed

289582 [main] INFO GenericExprerimentResultsCollector - Export statistics in
"/data/Results_Store/VirtuosoSUT/2025-04-27_VirtuosoSUT_RunWL_Scal10K/
Scalability/10K/VirtuosoSUT-ExperimentWorkload"
289740 [main] INFO GenericExprerimentResultsCollector - Created non existing directory
289760 [main] INFO GenericExprerimentResultsCollector - Statistiscs printed:

./00-SC1_Geometries_Intersects_GivenPolygon-cold
289772 [main] INFO GenericExprerimentResultsCollector - Statistiscs printed:

./00-SC1_Geometries_Intersects_GivenPolygon-cold-long
...
289777 [main] INFO GenericExprerimentResultsCollector - Statistiscs printed:

./02-SC3_Relaxed_Geometries_Intersect_Geometries-warm
289777 [main] INFO GenericExprerimentResultsCollector - Statistiscs printed:

./02-SC3_Relaxed_Geometries_Intersect_Geometries-warm-long
289778 [main] INFO GenericExprerimentResultsCollector - Cache COLD
289778 [main] INFO GenericExprerimentResultsCollector - Query 0
289779 [main] INFO GenericExprerimentResultsCollector - Rep 0 <COMPLETED-NONE> 634086428 +

114910498 = 748996926 nsecs, 554 results, 0 scan errors
289779 [main] INFO GenericExprerimentResultsCollector - Rep 1 <COMPLETED-NONE> 579085856 +

123844201 = 702930057 nsecs, 554 results, 0 scan errors
289779 [main] INFO GenericExprerimentResultsCollector - Rep 2 <COMPLETED-NONE> 444039862 +

123960680 = 568000542 nsecs, 554 results, 0 scan errors
289779 [main] INFO GenericExprerimentResultsCollector - Query 1
...
289780 [main] INFO GenericExprerimentResultsCollector - Query 2
...
289780 [main] INFO GenericExprerimentResultsCollector - Cache WARM
289780 [main] INFO GenericExprerimentResultsCollector - Query 0
...
289780 [main] INFO GenericExprerimentResultsCollector - Query 1
289780 [main] INFO GenericExprerimentResultsCollector - Rep 0 <COMPLETED-NONE> 158021881 +

383204 = 158405085 nsecs, 2 results, 0 scan errors
289780 [main] INFO GenericExprerimentResultsCollector - Rep 1 <COMPLETED-NONE> 157411100 +

355432 = 157766532 nsecs, 2 results, 0 scan errors
289780 [main] INFO GenericExprerimentResultsCollector - Rep 2 <COMPLETED-NONE> 157869590 +

304380 = 158173970 nsecs, 2 results, 0 scan errors
289780 [main] INFO GenericExprerimentResultsCollector - Query 2
...
289781 [main] INFO RunVirtuosoExperimentWorkload - End ScalabilityFunc
Start time = Sun 27 Apr 2025 07:45:49 pm EEST
End time = Sun 27 Apr 2025 07:50:39 pm EEST

6.5 Evaluation Results

Tables 4-6 present the evaluation results for the experiments run

with GeoRDFBench Framework.

6.5.1 Repository size. In terms of repository size, RDF4J’s Native-

store [58] (B-Tree indexed, no spatial index) performs best in small

to medium dataset sizes and quite well for millions of triples which

is on a par with its specification. In the second place we have Jena-

GeoSPARQL’s TDB2 and RDF4J+ which exhibit top performance.

For JenaGeoSPARQL this is no surprise as the 3 spatial indexes are

persisted in memory. RDF4J+ albeit having a Lucene quad spatial

index enabled, it keeps a very small storage footprint which actu-

ally becomes the smallest as input dataset size increases. GraphDB

and its variant GraphDB+ are storage efficient for larger datasets

following the RDF4J and RDF4J+ but seem to have substantial over-

head for small to medium ones. The former observation is quite

logical since GraphDB is built on top of RDF4J and its GeoSPARQL

plugin uses the same Lucene library as RDF4J+ for spatial indexing.

Strabon’s storage footprint is the second largest due to the PostGIS

database with an R-tree over GiST [22] spatial index. Simirarly, a 2D

Rtree spatial index is used by Virtuoso which features the largest

repository sizes, more than twice as big as the next system in any

dataset size.

Table 4: Scalability Workload Evaluation - Repository sizes (MB)

System ConfigName 10K triples 100K triples 1M triples

RDF4J 4 14 135

JenaGeoSPARQL 5 22 207

GraphDB 28 38 144

Virtuoso 77 133 521

GraphDB{+,+P} 32 44 201

RDF4J+ 7 21 205

Strabon 24 52 349

6.5.2 Ingestion time. In terms of data loading and indexing time

RDF4J is again the fastest, followed by JenaGeoSPARQL and RDF4J+.

Looking at the relative increase in time between the medium and

large dataset we get a clear view that JenaGeoSPARQL’s overall

time is less sensitive to dataset size increase which is indicative

of good scalability. The same can be said to an even larger degree

for GraphDB’s Preload [49] offline tool. This two-phase strategy

bulk loader has a large overhead, evident in the small and medium

datasets, but performs increasingly better as dataset sizes grow. Vir-

tuoso’s bulk loader shares the very good scalability of GraphDB’s

loader but not to the same degree. Strabon’s three phase
13

bulk

loader, StrabonLoader, greatly improves the data loading and index-

ing time over the standard OpenRDF Sesame based loader, however

lags far behind the other systems. Its basic characteristic is that

ingestion time is proportional to the dataset size and that is mainly

due to the time spent in phase one, RDF to CSV, which is performed

with the Redland raptor parser and serialization library.

Table 5: Scalability Workload Evaluation - Data ingestion times (sec)

System ConfigName 10K triples 100K triples 1M triples

RDF4J 0.62 1.80 11.14

JenaGeoSPARQL 2.49 3.91 16.61

GraphDB 14.89 11.82 17.59

Virtuoso 15.87 17.88 28.07

GraphDB{+,+P} 44.82 48.03 59.13

RDF4J+ 2.60 4.41 23.63

Strabon 20.42 50.91 287.32

6.5.3 Accuracy & Response time. Table 6 shows the number of

results returned and response times of the eight systems for each

one of the workload, query and cache type combinations. Figures 6-

8 show chart diagrams with the system response times for the

three queries. All results were accurately calculated by all systems

with one exception. For the spatial selection query SC1, for the
Scalability 1Mworkload, Virtuoso calculated 80501 instead of 80500

results returned by all other systems. This is probably due to some

rounding error in the 2D Rtree spatial indexing process and/or in

the implementation of geof:sfIntersects GeoSPARQL function

which mishandles a border result.

13
RDF to CSV, CSV to PostGIS tables, indexing tables

13

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

Table 6: Scalability Workload Evaluation - Accuracy & Response Times

RDF4J JenaGeoSPARQL GraphDB Virtuoso GraphDB+ GraphDB+P RDF4J+ Strabon

Cache Query Workload # Res Time(s) # Res Time(s) # Res Time(s) # Res Time(s) # Res Time(s) # Res Time(s) # Res Time(s) # Res Time(s)

Cold

SC1

10K 554 0.167 554 0.179 554 0.710 554 0.703 554 0.634 554 1.036 554 0.298 554 0.246

100K 6278 0.623 6278 0.350 6278 1.294 6278 1.202 6278 1.255 6278 1.747 6278 0.683 6278 1.148

1M 80500 3.639 80500 1.609 80500 3.918 80501 9.359 80500 3.943 80500 15.376 80500 3.408 80500 3.295

SC2

10K 2 0.135 2 0.090 2 3.320 2 0.575 2 3.439 2 1.031 2 0.254 2 0.160

100K 239 6.209 239 0.214 239 22.907 239 2.411 239 23.256 239 2.682 239 6.838 239 0.771

1M 813 23.995 813 4.392 813 213.015 813 21.658 813 207.580 813 26.186 813 25.539 813 3.373

SC3

10K 2 0.124 2 0.053 2 0.732 2 0.580 2 0.697 2 1.404 2 0.206 2 0.154

100K 239 6.136 239 0.183 239 8.816 239 2.415 239 8.802 239 6.238 239 6.719 239 0.695

1M 239 15.347 239 4.072 239 8.943 239 21.663 239 8.715 239 117.763 239 17.546 239 3.474

Warm

SC1

10K 554 0.115 554 0.010 554 0.111 554 0.142 554 0.141 554 0.122 554 0.101 554 0.056

100K 6278 0.419 6278 0.032 6278 0.384 6278 0.411 6278 0.379 6278 0.529 6278 0.411 6278 0.185

1M 80500 3.136 80500 0.322 80500 2.524 80501 4.229 80500 2.577 80500 13.122 80500 3.160 80500 1.399

SC2

10K 2 0.102 2 0.007 2 2.364 2 0.158 2 2.405 2 0.084 2 0.116 2 0.007

100K 239 5.991 239 0.079 239 22.781 239 1.717 239 22.300 239 0.997 239 6.689 239 0.011

1M 813 19.755 813 3.252 813 213.212 813 17.335 813 207.504 813 23.082 813 24.454 813 0.086

SC3

10K 2 0.101 2 0.007 2 0.110 2 0.161 2 0.111 2 0.416 2 0.105 2 0.006

100K 239 6.089 239 0.080 239 7.989 239 1.718 239 7.976 239 4.803 239 6.613 239 0.011

1M 239 11.303 239 3.288 239 8.086 239 17.437 239 8.085 239 116.961 239 15.621 239 0.078

(a) (b)

Figure 6: Response times - SC1 spatial selection query

(a) (b)

Figure 7: Response times - SC2 spatial join query

The response times are the median values out of three execu-

tions. JenaGeoSPARQL is the most performant system for COLD

cache setting and spatial selection queries independent of caching.

Strabon is very strong for WARM cache executions and particularly

strong on spatial join queries regardless of caching. RDF4J is very

fast with the smallest workload on COLD caches but we note that it

performs predictably through out the entire spectrum. Warm cache

times are on average 15% faster than cold ones, response times

for higher selectivity join SC3 are smaller than lower selectivity

join SC2 which means that filters are considered early in the query

plan and finally response times scale in an analog manner when

repository size grows. RDF4J+ provided minimal improvements

over RDF4J only in the spatial selection but its overall query per-

formance does not justify the extract repository size and additional

ingestion time. Virtuoso performs adequately but its behaviour is

not entirely predictable. While response times scale in an analog

14

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

(a) (b)

Figure 8: Response times - SC3 spatial join query

manner when repository size grows and warm cache times are on

average 20% faster than cold ones, the response times for higher

selectivity join SC3 are similar to the ones for lower selectivity

join SC2 which means that it has a low selectivity threshold for

engaging filters early in the query plan.

GraphDB exhibited two characteristics, lack of sensitivity to

caching when selectivity is not low and slow response times for

spatial joins especially the heavy SC2 query. Enabling the Lucene-

based GeoSPARQL plugin and using the standard spatial function

querysets, the GraphDB+ offered minimal benefits to the worst

scenarios with larger datasets. Using the spatial predicate version of

the querysets, as instructed in the official documentation [48], made

possible the effective use of the GeoSPARQL plugin’s spatial index

and drastically improved the GraphDB+P variant’s SC2 response

times by a factor of x10. However this negatively affected the times

for SC1 and SC3 queries, in some cases by a factor of (x5). This

variant also improved its sensitivity to caching.

The results of the above benchmark are available at a Github [28]

and Zenodo [27] for verification.

6.6 Benchmarking with Docker - Examples

The GeoRDFBench web site [26] contains detailed tutorials and

4 Docker examples. The “Multiple stores against multiple Scala-

bility Workloads” example engages RDF4J, GraphDB and Jena-

GeoSPARQL against the Scalability 10K, 100K, 1M workloads and

exhibits features, such as: (i) customization (Method 2) of queryset

specification, (ii) query accuracy checking and (iii) custom sink

reporting. In the “Multiple stores against LUBM(1,0) Workload” ex-

ample GeoRDFBench tests RDF4J, GraphDB and JenaGeoSPARQL

against the LUBM(1,0) SPARQL benchmark workload and exhibits

features, such as: (i) generation (Method 1) of workload compact

specification, (ii) query inclusion filtering, (iii) query accuracy

checking and (iv) SPARQL benchmark compatibility. The “Stra-

bon and Virtuoso against the Synthetic Workload” example engages

Strabon and Virtuoso against the Geographica 2 Synthetic-512 work-

load and exhibits features, such as: (i) query inclusion filtering, (ii)

customization (Method 2) of execution specification, (iii) query

timeout handling and (iv) custom sink reporting. All the above are

shown in more detail in Table 7.

7 Comparisons of GeoRDFBench

In this section we compare both the Geographica 2 benchmark

which featured some aspects of a benchmarking framework and

the HOBBIT benchmarking platform against GeoRDFBench Frame-

work and showcase new features and improvements that are intro-

duced by it.

7.1 GeoRDFBench vs HOBBIT

HOBBIT [59] is a very powerful but equally generic benchmarking

framework. It uses LD technologies, such as ontologies to describe

properties and parameters of benchmarks, systems and evaluation

metrics and uses OpenLink Virtuoso RDF store as the platform’s

persistent storage. However the benchmarks and systems tested

can be related to other subject areas distinct from LD, such as

machine learning (ML) applications [62]. At the same time it does

not provide any special assistance for benchmarking the performance

of linked data loading to and SPARQL query execution against RDF

stores. Also, no provision for GeoSPARQL is present anywhere in the

framework’s APIs [23] or configuration. GeoRDFBench, on the other

hand, was specifically designed for benchmarking RDF data loading

and GeoSPARQL/SPARQL query execution using the Java language.

In addition to the above, it is our view that the two frameworks

target different user groups.

The average HOBBIT user (according to designers’ expectations)

will be satisfied with reusing benchmarks and integrated systems

in the form of containers provided by other advanced HOBBIT

users and will simply modify the values of the models’ exposed

parameters. The premise is that there is such a “group of the

willing” users that will be creating the relevant ontologies and

containers for benchmarks and systems at the desired computer

languages and updating containers when systems under test get

newer versions. In reality the average HOBBIT user does not seem

interested in embarking upon extending or modifying the relevant

ontologies and containers of these benchmarks and systems and

when they do so it is usually in the context of European funded

sponsored challenges and mostly on the topic of Instance Matching

or Link Discovery
14
. For example, to rerun experiments with a

newer version of an existing system would at the very least require:

14
https://hobbit-project.github.io/challenge_overview.html

15

https://hobbit-project.github.io/challenge_overview.html

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

Table 7: Docker Examples Feature Matrix

Example

Name

Scalability 10K Workload

With RDF4J

RDF4J, GraphDB and JenaGeoSPARQL

against Scalability-{10K, 100K, 1M} Workloads

Strabon and Virtuoso against

The Synthetic Workload

RDF4J, GraphDB and JenaGeoSPARQL

against LUBM(1, 0) Workload

Type Docker Docker Docker Docker

Host OS Linux Windows 10 Linux Windows 10

Docker

Image Manual Build Pre-build from Github Registry Pre-build from Github Registry Pre-build from Github Registry

Simulated Host NUC8i7BEH NUC8i7BEH NUC8i7BEH NUC8i7BEH

Experiment Startup Script Automatic with Container Start Manual Script Start Manual Script Start Manual Script Start

Benchmark

Name Geographica 2 Geographica 2 Geographica 2 LUBM

Workload

Representation Compact Compact Detailed Compact

Name Scalability Scalability Synthetic LUBM(1, 0)

Dataset 1 10K 10K GOLD STANDARD Scaling Factor N=512 Scaling Factor N=1, GOLD STANDARD

Dataset 2 100K

Dataset 3 1M

RDF Stores

1 RDF4J RDF4J Strabon RDF4J

2 GraphDB Virtuoso GraphDB

3 JenaGeoSPARQL JenaGeoSPARQL

Features

Result Accuracy Check Yes Yes

Query Inclusion Filter Yes Yes

Specification Customization Yes (Queryset) Yes (Execution)

JSON Generator API Yes

Auto Query Prefix Header Yes Yes Yes Yes

System Query Translation Yes

Query Timeout Handling Yes

Custom Sink Reporting Yes Yes Yes

GeoSPARQL Benchmarking Yes Yes Yes

SPARQL Benchmarking Yes

(i) updating and rebuilding the source code of the System Adapter

module and (ii) rebuilding the container
15

which includes it.

The GeoRDFBench Framework’s user is mainly interested in

benchmarking specifically RDF store performance in terms of data

loading, data indexing, query accuracy and query execution times.

They have expertise in Java programming and want to find each

RDF store’s optimal configuration for each host’s capabilities, try

alternative data loading methods for different dataset sizes, exper-

iment with different spatial indexing algorithms and accuracies

offered by each geospatial RDF store, have control over query exe-

cution in order to investigate exceptions either because of timeout

expiration or the presence of malformed data or functionality com-

pliance issues.

As such, it is our view that the two frameworks are not competitive

and a direct comparisonwith quantitative criteria is neither possible

nor useful. However, the qualitative comparison between the two

frameworks that follows might help potential users find which

one better fits their specific project’ needs and provide ideas for

improving both frameworks.

HOBBIT has been used to benchmark non-LD applications and,

among other things, allows it to run benchmarks throughout the

LD life-cycle [32, 62]. This flexibility is achieved by containerizing

the benchmarking components and using the RabbitMQ [39] mes-

sage broker, which allows byte array “messages” to be exchanged

between them. This stripped from semantics representation is exactly

what powers the general applicability of the HOBBIT framework,

but at the same time it carries a heavy price for the component devel-

opers who are obliged to take care all the application domain related

critical tasks without assistance from the platform APIs [23]. This

functionality reusability at the container level also creates depen-

dencies of system containers’ source code to modifications of the other

ontologies. For example, if new features are added to/removed from

a benchmark’s ontology, it not only triggers source code modifi-

cation in the corresponding container but it also requires that all

15
https://hobbit-project.github.io/system_integration.html#1-set-up-the-system-

adapter-project

system adapter containers’ source code needs to be aware of the

new exposed benchmark features if one would like to test these

systems against the updated version of the test. The HOBBIT Java

SDK [61] provides some evidence
16

of the difficulties working with

HOBBIT, such as: (i) demands a lot of reading, (ii) requires manual

and error-prone work, (iii) does not allow to debug locally, etc. The

HOBBIT Java SDK attempts to alleviate some of these problems.

For the application domain of “benchmarking GeoSPARQL en-

abled RDF stores” the developer has to acquire knowledge and

implement tasks, such as: (i) RDF Store back-end choice with op-

tions, e.g., RDF4J+Lucene, (ii) setup optimized configurations (sizing

memory resources to various components) which may differ for

data load and query execution or when big data are involved, e.g.,

Virtuoso Performance Tuning [50], (iii) choose between normal

and bulk data loaders when available (see GraphDB LoadRDF and

Preload bulk load utilities), (iv) enable/build a geospatial index for

a repository upon creation for some systems, e.g., Strabon, and

Stardog, while for other systems, such as GraphDB [48] after data

loading through a special plugin’s operations, (v) choosing spatial

index method and accuracy, e.g., GraphDB (vi) tagging GeoSPARQL

spatial properties so that RDF Stores can perform spatial opera-

tions, e.g., RDF4J+Lucene [57], (vii) build namespace prefix header

for each queryset usually needs to merge prefixes from the input

dataset, the queryset itself and system dependent prefixes that

define required/specialized vocabularies (viii) create a declarative

mapping between files and contexts when triples from different

origin are loaded in separate graphs (see Geographica 2 Real-world

workload), (ix) query execution must be granular, able to handle

exceptions though out its phases while being able to receive partial

resultsets upon timeouts or gracefully skip results as in the case of

“bad geometries”.

For all the above and much more GeoRDFBench provides sup-

port through: (i) its runtime APIs, (ii) bundled functionality and

16
https://github.com/hobbit-project/java-sdk-example/blob/master/SDK_vs_

Standard_Way.pdf

16

https://hobbit-project.github.io/system_integration.html#1-set-up-the-system-adapter-project
https://hobbit-project.github.io/system_integration.html#1-set-up-the-system-adapter-project
https://github.com/hobbit-project/java-sdk-example/blob/master/SDK_vs_Standard_Way.pdf
https://github.com/hobbit-project/java-sdk-example/blob/master/SDK_vs_Standard_Way.pdf

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

Table 8: Feature Comparison with HOBBIT

Category Feature HOBBIT GeoRDFBench

Generic

Features

Programming Language support

Java,

Python,. . .

Java

Distributed System support yes no

SUT Query Language support

don’t care

(no support)

GeoSPARQL,

SPARQL

Functionality (code)

Reusability

yes(containers)

yes(Runtime APIs,

Scripts)

Structure (data)

Reusability

yes(ontologies)

yes(JSON specs,

Scripts)

Metadata Model ontology ER diagram

Assistance

Testing

RDF Stores -SPARQL/

GeoSPARQL Processors

SUT Configuration optimization no yes

Spatial Index setup no yes

Query Namespace

Header management

no yes(auto)

Dynamic Queryset filtering no yes(Inc/Exclusive)

Dataset To Context mapping no yes

WARM Cache Query exec yes yes

COLD Cache Query exec no yes

Query Timeout handling no yes

Query Exception handling no yes

RDF Framework Providers -

OpenRDF Sesame,

RDF4J,

Apache Jena

properties implemented as hierarchies of classes, (iii) JSON Genera-

tor utility classes and (iv) scripts that organize the configuration

intricacies of prebundled systems and timely execution of critical

actions when appropriate for each system. Effectively, the researcher

interested in SPARQL and especially GeoSPARQL benchmarking re-

ceives great help with the demanding parts of the task. Table 8, sum-

marizes the features of both systems.

7.2 GeoRDFBench vs Geographica 2

Geographica 2 benchmark is a set of well designed geospatial work-

loads and a set of RDF stores running against them following a

specific set of steps and rules. However several areas were identified

where much was left to expect for improvement. Abstraction and

encapsulation [7, 9] were limited, leading to increased duplication of

code and effort, especially when introducing new systems with a dif-

ferent RDF Java framework or with backward incompatible updated

RDF Java framework version. Generalization-Specialization [7, 9]

was limited to workload-specific queryset and experiment class

hierarchies. Query namespace prefix header was constructed per

dataset-system combination. Duplication of similar code could be

found in the system setup, repository construction, query execu-

tion logic, statistics collection, etc. Host related parameters, such as

maximum available system memory, mount point paths for repos-

itory storage, log and results collection, hard disk types, such as

SSD vs magnetic disks, affected the configuration and optimization

of the systems under test, therefore, making it very difficult and

error prone running the same experiments in different hosts. In gen-

eral, the structure of benchmark components (datasets, queryset,

execution model) and experiment environment (host RAM, cache

clearing method, locations for datasets and repositories) were not

formally specified, were tightly coupled with the code base and

the problem was only partially alleviated by multiple experiment

execution parameters.

GeoRDFBench expands the scope of Universe of Discourse

(UoD) [9] modeling to include all benchmark and experiment en-

vironment components, declaratively defines their specifications,

decouples these from code by serializing them to disk, provides

APIs and utilities to generate custom specifications and allows easy

component creation from existing ones. Of paramount importance

is the generalization of the repository and connection functionality

of common RDF frameworks which allows significant reusability

of code and easy integration of new systems with similar (in case

of version upgrade) or different RDF frameworks.

As further quantitative evidence of the difference between Geo-

graphica 2 and GeoRDFBench a comparison is made between the

two using the well established source code quality metric and effort

predictor, the Source Lines of Code (SLOC) [38, 46]. More specifically,

the utility cloc [13] measured the number of files and the physical

SLOCs for the runtime and RDF modules for the two systems.

Table 9 presents the SLOC comparison between the two. The

number of files and physical SLOCs of the GeoRDFBench runtime

are x2.54 and x4.82 times the corresponding Geographica 2 ones.

These numbers confirm the large scale of redesign and scope expan-

sion that took place and which increased the opportunities for code

reuse for RDF module implementation. This statement is consistent

with the reduction by half of the number of physical SLOCs for

the four common RDF modules: Strabon, RDF4J, GraphDB and Vir-

tuoso. The newly introduced, Jena GeoSPARQL, required the least

number of SLOCs because of its full GeoSPARQL compliance, while

the newly introduced Stardog required the most effort since 50% of

its SLOCs dealt with query translation to handle non-compliance

to the GeoSPARQL standard. Also Stardog and Virtuoso required

additional code to handle the server aspects of their architecture.

RDF4Js SLOCs are relatively large because it encompasses the “dual”

implementation of NativeStore with and without Lucene SAIL for

spatial indexing.

Table 10 presents details on the Geographica 2 and GeoRDF-

Bench classes supporting each feature/concept.

8 Conclusions and Future Work

We presented the concepts, architecture and basic operation of the

GeoRDFBench Framework, which aims to: (i) save the geospatial

semantic benchmark researcher’s time and effort testing systems

against benchmarks, (ii) minimize the margin for errors, (iii) in-

crease reproducibility and results’ verification, while (iv) remaining

extensible. Source code, running examples and instructions are

provided in our repositories [24, 25] and site [26].

Future work will include: (i) a user interface module for assisting

with generating and modifying JSON specifications, (ii) an endpoint

module for CRUD operations on JSON specification libraries, (iii)

support for the Hadoop file system and (iv) a fourth Spark-based

framework API, so that Spark-based distributed GeoSPARQL solu-

tions, such as Strabo 2 [5] can be tested.

References

[1] ISO/IEC 2024. Information technology - Database languages - GQL. ISO/IEC.

https://www.iso.org/standard/76120.html

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,

Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for

Future GraphQuery Languages. In Proceedings of the 2018 International Conference

on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,

2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,

1421–1432. doi:10.1145/3183713.3190654

[3] Robert Battle and Dave Kolas. 2012. Enabling the geospatial Semantic Web with

Parliament and GeoSPARQL. Semantic Web 3, 4 (2012), 355–370.

[4] Pierfrancesco Bellini and Paolo Nesi. 2018. Performance assessment of RDF

graph databases for smart city services. J. Vis. Lang. Comput. 45 (2018), 24–38.

17

https://www.iso.org/standard/76120.html
https://doi.org/10.1145/3183713.3190654

Preprint on Zenodo, May 06, 2025, Athens, Greece Ioannidis T., Mamoulis N. and Koubarakis M.

Table 9: SLOC Comparison with Geographica 2

RDF Java

Framework

OpenRDF

Sesame

RDF4J Jena

GeoRDFBench

Module

Runtime

Strabon

SUT

RDF4J

SUT

GraphDB

SUT

Virtuoso

SUT

Stardog

SUT

JenaGeoSPARQL

SUT

CLOC

Indicator Files

Code

Lines Files

Code

Lines Files

Code

Lines Files

Code

Lines Files

Code

Lines Files

Code

Lines Files

Code

Lines

Geographica 2 31 2249 2 333 3 835 3 584 4 511 - - - -

GeoRDFBench 79 10842 4 218 5 357 4 170 4 319 4 435 4 133

Increace (%) 155% 382% 100% -35% 67% -57% 33% -71% 0% -38%

Table 10: Feature Comparison with Geographica 2

Module

Feature /

Concept Group

Geographica 2 GeoRDFBench

Run-

time

Supported

RDF Framework

OpenRDF Sesame

RDF4J

-

OpenRDF Sesame

RDF4J

Jena

Benchmark Concept

To Class

QueriesSet
*

<<IQuery>>, SimpleQuery

<<IQuerySet>>, SimpleQS
*

<<IQuerySetPartOfWorkload>>, SimpleQSPartOfWorkload
*

<<ISimpleDataSet>>, <<IGeospatialSimpleDataSet>>, GenericGeospa-

tialSimpleDS

<<IGeospatialDataSet>>, GeographicaDS

<<IExecutionSpec>>, SimpleES

<<IGeospatialWorkLoadSpec>>, SimpleGeospatialWL

Environment Concept

To Class

-

<<IHost>>, SimpleHost

<<IOS>>, GenericLinuxOS
**

<<IReportSource>>, JDBCRepSrc, PostgreSQLRepSrc,

EmbeddedJDBCRepSrc, H2EmbeddedRepSrc

<<IReportSpec>>, SimpleReportSpec

System Concept

To Class

<<SUT>>

RunSUT

<<ISUT>>, SesamePostGISBasedSUT, RDF4JBasedSUT, JenaBasedSUT

RunSUTExperiment,

RunSUTExperimentWorkload

<<IGeographicaSystem>>,

AbstractGeographicaSystem, SesamePostGISBasedGeographicaSystem,

RDF4JBasedGeographicaSystem, JenaBasedGeographicaSystem

Experiment, ExperimentWorkload

Experiment Concept

To Class

Experiment
*

Experiment, ExperimentWorkload

<<IExperimentResultsCollector>>, GenericExprerimentResultsCollector

Utility To Class -

QuerySetUtil, DataSetUtil, ExecutionSpecUtil, WorkLoadSpecUtil

HostUtil, ReportSourceUtil, ReportSpecUtil

* Set of classes which are workload-

specific

** Set of classes for specific Linux variants

Bold + << >> :

Bold + Italic :

Bold :

interface

abstact class

concrete class

doi:10.1016/j.jvlc.2018.03.002

[5] Dimitris Bilidas, Theofilos Ioannidis, Nikos Mamoulis, and Manolis Koubarakis.

2022. Strabo 2: Distributed Management of Massive Geospatial RDF Datasets.

In The Semantic Web–ISWC 2022: 21st International Semantic Web Conference,

Virtual Event, October 23–27, 2022, Proceedings. Springer, 411–427.

[6] Christian Bizer and Andreas Schultz. 2009. The berlin sparql benchmark. Inter-

national Journal on Semantic Web and Information Systems (IJSWIS) 5, 2 (2009),

1–24.

[7] Grady Booch, Robert A Maksimchuk, Michael W Engle, Bobbi J Young, Jim

Connallen, and Kelli A Houston. 2008. Object-oriented analysis and design with

applications. ACM SIGSOFT software engineering notes 33, 5 (2008), 29–29.

[8] European Commission’s Joint Research Centre. 2007. INSPIRE Directive web site.

https://inspire.ec.europa.eu/inspire-directive/2

[9] Peter Coad, Edward Yourdon, et al. 1992. Object-oriented analysis. Vol. 2. Yourdon

press New York.

[10] European Commission. 2006. SWING Project web site. https://cordis.europa.eu/

project/id/026514

[11] European Commission. 2019. ExtremeEarth Project web site. http://earthanalytics.

eu/

[12] Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey, and Axel-

Cyrille Ngonga Ngomo. 2017. I guana: a generic framework for benchmarking

the read-write performance of triple stores. In The Semantic Web–ISWC 2017:

16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,

Proceedings, Part II 16. Springer, 48–65.

[13] Albert Danial. 2021. cloc: v1.92 source code on Github. https://github.com/

AlDanial/cloc

[14] Alishiba Dsouza, Nicolas Tempelmeier, Ran Yu, Simon Gottschalk, and Elena

Demidova. 2021. WorldKG: A World-Scale Geographic Knowledge Graph. In

CIKM ’21: The 30th ACM International Conference on Information and Knowledge

Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021. ACM,

4475–4484.

[15] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social net-

work benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. 619–630.

[16] Orri Erling and Ivan Mikhailov. 2009. Virtuoso: RDF support in a native RDBMS.

In Semantic web information management: a model-based perspective. Springer,

501–519.

18

https://doi.org/10.1016/j.jvlc.2018.03.002
https://inspire.ec.europa.eu/inspire-directive/2
https://cordis.europa.eu/project/id/026514
https://cordis.europa.eu/project/id/026514
http://earthanalytics.eu/
http://earthanalytics.eu/
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

The GeoRDFBench Framework Preprint on Zenodo, May 06, 2025, Athens, Greece

[17] FasterXML. 2024. FasterXML Jackson source code on Github. https://github.com/

FasterXML/jackson

[18] Raphael A Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for

retrieval on composite keys. Acta informatica 4 (1974), 1–9.

[19] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.

In Proceedings of the 2018 international conference on management of data. 1433–

1445.

[20] George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. 2013. Geographica: A

benchmark for geospatial rdf stores (long version). In The Semantic Web–ISWC

2013: 12th International Semantic Web Conference, Sydney, NSW, Australia, October

21-25, 2013, Proceedings, Part II 12. Springer, 343–359.

[21] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for

OWL knowledge base systems. Journal of Web Semantics 3, 2-3 (2005), 158–182.

[22] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. 1995. Generalized

Search Trees for Database Systems. In VLDB’95, Proceedings of 21th International

Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland,

Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio (Eds.). Morgan Kaufmann,

562–573. http://www.vldb.org/conf/1995/P562.PDF

[23] HOBBIT. 2017. HOBBIT General API. https://hobbit-project.github.io/platform_

api.html

[24] Theofilos Ioannidis. 2023. GeoRDFBench Framework Samples source code on Github.

https://github.com/tioannid/geordfbench_samples

[25] Theofilos Ioannidis. 2023. GeoRDFBench Framework source code on Github. https:

//github.com/tioannid/geordfbench

[26] Theofilos Ioannidis. 2023. GeoRDFBench Framework web site. https://geordfbench.

di.uoa.gr/

[27] Theofilos Ioannidis. 2025. GeoRDFBench Framework Benchmark Results doi. https:

//doi.org/10.5281/zenodo.15349539

[28] Theofilos Ioannidis. 2025. GeoRDFBench Framework Benchmark Results on Github.

https://github.com/tioannid/geordfbench_samples

[29] Theofilos Ioannidis, George Garbis, Kostis Kyzirakos, Konstantina Bereta, and

Manolis Koubarakis. 2021. Evaluating geospatial RDF stores using the benchmark

Geographica 2. Journal on Data Semantics 10, 3-4 (2021), 189–228.

[30] Krzysztof Janowicz, Pascal Hitzler, Wenwen Li, Dean Rehberger, Mark Schild-

hauer, Rui Zhu, Cogan Shimizu, Colby K. Fisher, Ling Cai, Gengchen Mai, Joseph

Zalewski, Lu Zhou, Shirly Stephen, Seila Gonzalez Estrecha, Bryce D. Mecum,

Anna Lopez-Carr, Andrew Schroeder, Dave Smith, Dawn J. Wright, Sizhe Wang,

Yuanyuan Tian, Zilong Liu, Meilin Shi, Anthony D’Onofrio, Zhining Gu, and

Kitty Currier. 2022. Know, Know Where, Knowwheregraph: A Densely Con-

nected, Cross-Domain Knowledge Graph and Geo-Enrichment Service Stack

for Applications in Environmental Intelligence. AI Mag. 43, 1 (2022), 30–39.

doi:10.1609/aimag.v43i1.19120

[31] Ernesto Jiménez-Ruiz, Tzanina Saveta, Ondrej Zamazal, Sven Hertling, Michael

Roder, Irini Fundulaki, Axel Ngonga Ngomo, Mohamed Sherif, Amina Annane,

Zohra Bellahsene, et al. 2018. Introducing the HOBBIT platform into the ontology

alignment evaluation campaign. In 13th International Workshop on Ontology

Matching (OM), Vol. 2288. 49–60.

[32] Milos Jovanovik. 2017. HOBBIT Examples source code on Github. https://github.

com/hobbit-project/SpatialBenchmark

[33] Milos Jovanovik, Timo Homburg, and Mirko Spasić. 2021. A GeoSPARQL com-

pliance benchmark. ISPRS International Journal of Geo-Information 10, 7 (2021),

487.

[34] Nikolaos Karalis, Georgios M. Mandilaras, and Manolis Koubarakis. 2019. Ex-

tending the YAGO2 Knowledge Graph with Precise Geospatial Knowledge. In

The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference,

Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II (Lecture Notes in

Computer Science, Vol. 11779), Chiara Ghidini, Olaf Hartig, Maria Maleshkova,

Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and

Fabien Gandon (Eds.). Springer, 181–197. doi:10.1007/978-3-030-30796-7_12

[35] Charalampos Kostopoulos, Giannis Mouchakis, Antonis Troumpoukis, Nefeli

Prokopaki-Kostopoulou, Angelos Charalambidis, and Stasinos Konstantopoulos.

2021. KOBE: Cloud-native Open Benchmarking Engine for federated query

processors. In The SemanticWeb: 18th International Conference, ESWC 2021, Virtual

Event, June 6–10, 2021, Proceedings 18. Springer, 664–679.

[36] Manolis Koubarakis, Konstantina Bereta, Dimitris Bilidas, Konstantinos Gian-

nousis, Theofilos Ioannidis, Despina-Athanasia Pantazi, George Stamoulis, Seif

Haridi, Vladimir Vlassov, Lorenzo Bruzzone, et al. 2019. From copernicus big

data to extreme earth analytics. Open Proceedings (2019), 690–693.

[37] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. 2012. Strabon:

A semantic geospatial DBMS. In The Semantic Web–ISWC 2012: 11th International

Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings,

Part I 11. Springer Berlin Heidelberg, 295–311.

[38] Davy Landman, Alexander Serebrenik, and Jurgen Vinju. 2014. Empirical Analysis

of the Relationship between CC and SLOC in a Large Corpus of Java Methods.

In 2014 IEEE International Conference on Software Maintenance and Evolution.

221–230. doi:10.1109/ICSME.2014.44

[39] Rabbit Technologies Ltd. 2007. RabbitMQ Broker web site. https://www.rabbitmq.

com/

[40] Manolis Koubarakis (Ed.). 2023. Geospatial data science: a hands-on approach

based on geospatial technologies. ACM Books.

[41] Matthew Perry and John Herring. 2012. OGC GeoSPARQL - A Geographic Query

Language for RDF Data. OGC Implementation Standard OGC 11-052r4. Open

Geospatial Consortium. http://www.opengis.net/doc/IS/geosparql/1.0

[42] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.

2011. DBpedia SPARQL benchmark–performance assessment with real queries

on real data. In The Semantic Web–ISWC 2011: 10th International Semantic Web

Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I 10. Springer,

454–469.

[43] Thomas Mueller. 2005. H2 Database) web site. https://h2database.com/

[44] MvnRepository. 2024. Maven Central Repository web site. https://mvnrepository.

com/repos/central

[45] Axel-Cyrille Ngonga Ngomo, Sören Auer, Jens Lehmann, and Amrapali Zaveri.

2014. Introduction to linked data and its lifecycle on the web. Reasoning Web.

Reasoning on the Web in the Big Data Era: 10th International Summer School 2014,

Athens, Greece, September 8-13, 2014. Proceedings 10 (2014), 1–99.

[46] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007. A SLOC

counting standard. In Cocomo ii forum, Vol. 2007. Citeseer, 1–16.

[47] Ontotext. 2024. GraphDB. https://graphdb.ontotext.com/

[48] Ontotext. 2024. GraphDB GeoSPARQL. https://graphdb.ontotext.com/

documentation/10.7/geosparql-support.html#geosparql-support

[49] Ontotext. 2024. GraphDB ImportRDF GeoSPARQL. https://graphdb.ontotext.com/

documentation/10.8/command-line-tools.html#importrdf

[50] OpenLink. 2024. OpenLink Virtuoso Performance Tuning. https://vos.openlinksw.

com/owiki/wiki/VOS/VirtRDFPerformanceTuning

[51] Oracle. 2019. Spatial And Graph web site. https://docs.oracle.com/en/database/

oracle/oracle-database/19/spatial-and-graph.html

[52] Taha Osman and Gregory Albiston. 2022. GeoSPARQL-Jena: Implementation

and Benchmarking of a GeoSPARQL Graphstore. In 23rd European Conference on

Knowledge Management Vol 2. Academic Conferences and publishing limited.

[53] Alisdair Owens, Andy Seaborne, Nick Gibbins, et al. 2008. Clustered TDB: a

clustered triple store for Jena. (2008).

[54] Kostas Patroumpas, Giorgos Giannopoulos, and Spiros Athanasiou. 2014. Towards

geospatial semantic data management: strengths, weaknesses, and challenges

ahead. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems. 301–310.

[55] Matthew Perry, Ana Estrada, Souripriya Das, and Jayanta Banerjee. 2015. De-

veloping GeoSPARQL Applications with Oracle Spatial and Graph.. In SSN-

TC/OrdRing@ ISWC. 57–61.

[56] RDF4J. 2024. RDF4J. https://rdf4j.org/

[57] RDF4J. 2024. RDF4J Lucene GeoSPARQL. https://rdf4j.org/documentation/

programming/geosparql/

[58] RDF4J. 2024. RDF4J NativeStore API Doc. https://rdf4j.org/javadoc/4.3.16/org/

eclipse/rdf4j/sail/nativerdf/NativeStore.html

[59] Michael Röder, Denis Kuchelev, and Axel-Cyrille Ngonga Ngomo. 2020. HOBBIT:

A platform for benchmarking Big Linked Data. Data Sci. 3, 1 (2020), 15–35.

doi:10.3233/ds-190021

[60] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language

(invited talk). In Proceedings of the 15th Symposium on Database Programming

Languages. ACM. doi:10.1145/2815072.2815073

[61] Michael Röder. 2018. HOBBIT Java SDK web site. https://github.com/hobbit-

project/java-sdk

[62] Michael Röder. 2024. HOBBIT Examples source code on Github. https://github.

com/hobbit-project/hobbit.examples

[63] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.

Feasible: A feature-based sparql benchmark generation framework. In The Se-

mantic Web-ISWC 2015: 14th International Semantic Web Conference, Bethlehem,

PA, USA, October 11-15, 2015, Proceedings, Part I 14. Springer, 52–69.

[64] Stardog. 2024. Stardog. https://www.stardog.com/

[65] Harsh Thakkar. 2017. Towards an open extensible framework for empirical

benchmarking of data management solutions: LITMUS. In The Semantic Web:

14th International Conference, ESWC 2017, Portorož, Slovenia, May 28–June 1, 2017,

Proceedings, Part II 14. Springer, 256–266.

[66] Antonis Troumpoukis, Stasinos Konstantopoulos, Giannis Mouchakis, Nefeli

Prokopaki-Kostopoulou, Claudia Paris, Lorenzo Bruzzone, Despina-Athanasia

Pantazi, and Manolis Koubarakis. 2020. GeoFedBench: A Benchmark for Feder-

ated GeoSPARQL Query Processors.. In ISWC (Demos/Industry). 228–232.

[67] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: a property graph query language. In Proceedings of the Fourth

International Workshop on Graph Data Management Experiences and Systems,

Redwood Shores, CA, USA, June 24 - 24, 2016, Peter A. Boncz and Josep Lluís

Larriba-Pey (Eds.). ACM, 7. doi:10.1145/2960414.2960421

[68] W3C. 2013. SPARQL 1.1 Query Language web site. W3C. https://www.w3.org/

TR/sparql11-query/

[69] Wikipedia. 2008. Geohash wiki page. https://en.wikipedia.org/wiki/Geohash

19

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
http://www.vldb.org/conf/1995/P562.PDF
https://hobbit-project.github.io/platform_api.html
https://hobbit-project.github.io/platform_api.html
https://github.com/tioannid/geordfbench_samples
https://github.com/tioannid/geordfbench
https://github.com/tioannid/geordfbench
https://geordfbench.di.uoa.gr/
https://geordfbench.di.uoa.gr/
https://doi.org/10.5281/zenodo.15349539
https://doi.org/10.5281/zenodo.15349539
https://github.com/tioannid/geordfbench_samples
https://doi.org/10.1609/aimag.v43i1.19120
https://github.com/hobbit-project/SpatialBenchmark
https://github.com/hobbit-project/SpatialBenchmark
https://doi.org/10.1007/978-3-030-30796-7_12
https://doi.org/10.1109/ICSME.2014.44
https://www.rabbitmq.com/
https://www.rabbitmq.com/
http://www.opengis.net/doc/IS/geosparql/1.0
https://h2database.com/
https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central
https://graphdb.ontotext.com/
https://graphdb.ontotext.com/documentation/10.7/geosparql-support.html#geosparql-support
https://graphdb.ontotext.com/documentation/10.7/geosparql-support.html#geosparql-support
https://graphdb.ontotext.com/documentation/10.8/command-line-tools.html#importrdf
https://graphdb.ontotext.com/documentation/10.8/command-line-tools.html#importrdf
https://vos.openlinksw.com/owiki/wiki/VOS/VirtRDFPerformanceTuning
https://vos.openlinksw.com/owiki/wiki/VOS/VirtRDFPerformanceTuning
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatial-and-graph.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatial-and-graph.html
https://rdf4j.org/
https://rdf4j.org/documentation/programming/geosparql/
https://rdf4j.org/documentation/programming/geosparql/
https://rdf4j.org/javadoc/4.3.16/org/eclipse/rdf4j/sail/nativerdf/NativeStore.html
https://rdf4j.org/javadoc/4.3.16/org/eclipse/rdf4j/sail/nativerdf/NativeStore.html
https://doi.org/10.3233/ds-190021
https://doi.org/10.1145/2815072.2815073
https://github.com/hobbit-project/java-sdk
https://github.com/hobbit-project/java-sdk
https://github.com/hobbit-project/hobbit.examples
https://github.com/hobbit-project/hobbit.examples
https://www.stardog.com/
https://doi.org/10.1145/2960414.2960421
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://en.wikipedia.org/wiki/Geohash

	Abstract
	1 Introduction
	2 Related Work and Background
	3 GeoRDFBench: A Framework Simplifying Geospatial Semantic Benchmarking
	4 GeoRDFBench Runtime: The Framework's Engine
	4.1 Abstract API
	4.2 RDF Framework Specific APIs
	4.3 Experiment Executor
	4.4 JSON Specification Generator

	5 JSON Generator API - By Example
	5.1 Dataset generation
	5.2 Queryset generation
	5.3 Execution spec generation

	6 Experimental Evaluation
	6.1 Environment
	6.2 Benchmark description
	6.3 Experiment Executions
	6.4 Experiment log files
	6.5 Evaluation Results
	6.6 Benchmarking with Docker - Examples

	7 Comparisons of GeoRDFBench
	7.1 GeoRDFBench vs HOBBIT
	7.2 GeoRDFBench vs Geographica 2

	8 Conclusions and Future Work
	References

