
Evaluating Geospatial RDF stores Using the Benchmark Geographica 2I

Theofilos Ioannidis, George Garbis, Kostis Kyzirakos, Konstantina Bereta, Manolis Koubarakis

Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, University Campus, Ilissia, Athens 15784,
Greece

Abstract

Since 2007, geospatial extensions of SPARQL, like GeoSPARQL and stSPARQL, have been defined and correspond-
ing geospatial RDF stores have been implemented. In addition, some work on developing benchmarks for evaluating
geospatial RDF stores has been carried out. In this paper, we revisit the Geographica benchmark defined by our group
in 2013 which uses both real world and synthetic data to test the performance and functionality of geospatial RDF
stores. We present Geographica 2, a new version of the benchmark which extends Geographica by adding one more
workload, extending our existing workloads and evaluating 5 more RDF stores. Using three different real workloads,
Geographica 2 tests the efficiency of primitive spatial functions in RDF stores and the performance of the RDF stores
in real use case scenarios, a more detailed evaluation is performed using a synthetic workload and the scalability of the
RDF stores is stressed with the scalability workload. In total eight systems are evaluated out of which six adequately
support GeoSPARQL and two offer limited spatial support.
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1. Introduction

Many geospatial datasets have recently been added to
the Web of data and geospatial extensions to SPARQL,
such as GeoSPARQL and stSPARQL, have been de-
fined.

GeoSPARQL [1] is a standard of the Open Geospa-
tial Consortium (OGC) for a SPARQL-based query
language for geospatial data expressed in RDF.
GeoSPARQL defines a vocabulary (classes, datatypes
and properties) that can be used in RDF graphs to rep-
resent geographic features with vector geometries.

The query language stSPARQL [2, 3] is an exten-
sion of SPARQL 1.1 developed by our group for rep-
resenting and querying geospatial data that changes
over time. Similarly to GeoSPARQL, the geospatial
part of stSPARQL defines datatypes that can be used
for representing in RDF the serializations of vector
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geometries encoded according to the widely adopted
OGC standards Well Known Text (WKT) [4] and Ge-
ography Markup Language (GML) [5]. stSPARQL
and GeoSPARQL also define extension functions from
the OGC standard “OpenGIS Simple Feature Access”
(OGC-SFA) [4] that can be used for querying vector ge-
ometries.

The query languages stSPARQL1 and GeoSPARQL
were developed independently at around the same
time, and have produced very similar representational
and querying constructs. A detailed comparison of
stSPARQL and GeoSPARQL is given in [6].

In parallel with the appearance of GeoSPARQL
and stSPARQL, researchers have been implementing
geospatial RDF stores that support these SPARQL
extensions (e.g., Strabon [2], Parliament [7], and
uSeekM). The earlier approach for the implementa-
tion was by extending existing RDF frameworks (e.g.,
Sesame) with limited geospatial functionality and rely-
ing on state of the art spatially-enabled RDBMSs (e.g.,
PostGIS) for the storage and querying of geometries
(e.g., Strabon and uSeekM with PostGIS). One reason
that this hybrid approach had been successful is that the

1http://www.strabon.di.uoa.gr/files/stSPARQL_
tutorial.pdf
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relational realization of the OGC-SFA standard has been
widely adopted by many RDBMS for storing and ma-
nipulating vector geometries. The state of the art in this
area is summarized in the early survey paper [6].

However new highly competitive geospatial RDF
stores appeared lately that belong to the NoSQL graph
databases technology family e.g., GraphDB. In addi-
tion, as of mid-2018, some RDF Frameworks (e.g.,
RDF4J, formerly known as Sesame) advanced substan-
tially in terms of GeoSPARQL support, the availabil-
ity of indexing and search technologies and may make
an attractive starting point for building geospatial RDF
stores rich in terms of features and more efficient in
terms of performance.

The above advances to the state of the art in query lan-
guages and implemented systems has also been matched
with work on evaluation and benchmarking of geospa-
tial RDF stores. Although there are various benchmarks
for spatially-enabled Relational Database Management
Systems (RDBMS) [8, 9, 10, 11, 12, 13], there are some
publications [14, 2, 15, 16] that study the performance
of geospatial RDF stores but no widely-accepted bench-
mark exists.

The work described in [14] has preceded the
GeoSPARQL and stSPARQL proposals, therefore it
does not cover many of the features available in these
languages. Only point and rectangle geometries and
only few topological and non-topological functions are
included in its workload. Similarly, only the geospatial
RDF store SPAUK [17], which is a precursor to Parlia-
ment, has been evaluated using this benchmark. [14]
uses a synthetic workload only and does not consider
real linked geospatial datasets such as the ones that are
available in the LOD cloud today.

In [2] authors present the geospatial RDF store Stra-
bon2 and they include a section that is an evaluation
targeted mostly to Strabon than a general evaluation
benchmark. Both a real world workload and a synthetic
one is used in [2]. The synthetic workload uses only
point geometries and spatial selection queries, but it al-
lows the study of performance in a controlled environ-
ment.

[15] presents a benchmark based on [14] and adapted
to the technological advances at the time. [15] evalu-
ates several geospatial RDF stores taking into account
the expressive power of GeoSPARQL and using real
data from OpenStreetMap (OSM)3 of various geome-
try types (points, lines, polygons). Its workload covers
the primary query types covered in [14] (spatial location

2http://www.strabon.di.uoa.gr/
3https://www.openstreetmap.org/

queries, spatial range queries, spatial join queries, and
nearest neighbor queries) and additional query types,
such as queries using non-topological spatial functions,
and negation and aggregation queries that use spatial fil-
ters.

Finally, the previous version of our benchmark [16],
named Geographica4 was a comprehensive proposal at
the time and has been used to evaluate RDF stores sup-
porting GeoSPARQL and stSPARQL. It comprises two
workloads with their associated datasets and queries: a
real world workload and a synthetic workload. The real
world workload uses publicly available linked geospa-
tial data, covering a wide range of geometry types (e.g.,
points, lines, polygons). This workload, follows the ap-
proach of the benchmark Jackpine [12] and defines a
micro benchmark and a macro benchmark. The micro
benchmark tests primitive spatial functions. The spa-
tial component of a system is tested with queries that
use non-topological functions, spatial selections, spatial
joins and spatial aggregate functions. The macro bench-
mark tests performance of selected RDF stores in typ-
ical application scenarios like reverse geocoding, map
search and browsing and a real world use case from
the Earth Observation (EO) domain. For the synthetic
workload of Geographica, a generator was developed
that produces synthetic datasets of various sizes and
generates queries of varying thematic and spatial se-
lectivity. In this way, performance of geospatial RDF
stores can be studied in a closely controlled environ-
ment. This workload follows the rationale of earlier pa-
pers [11, 2, 18]. For reasons of reproducibility, both
workloads are publicly available on the web site5 of the
benchmark.

The present article revisits [16] and offers the follow-
ing contributions:

• We present a new version of Geographica, called
Geographica 2, which contains the following
extensions. We extended the macro part of
the real world workload of Geographica [16]
by adding two more application scenarios: the
geocoding scenario and a scenario that in-
volves the computation of statistics for
geospatial datasets. The second, an important addi-
tion to the original benchmark is the scalability
workload, which unveils the behavior of three
stores (Strabon, GraphDB and RDF4J) in three

4Geographica (Greek: Γεωγραφικά) is a 17-volume encyclo-
pedia of geographical knowledge written by the Greek geographer,
philosopher and historian Strabon (Greek: Στράβων) in 7 BC. (http:
//en.wikipedia.org/wiki/Geographica)

5http://geographica2.di.uoa.gr/
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key areas, storage space, bulk loading and query
response time, all with respect to the number of
triples in the dataset. All three aspects measured
are critical for developing systems that work with
large data sizes and discovering deficiencies can
help choose the appropriate system for each case,
and guide future research and system improve-
ments in the areas of data storage, indexing strate-
gies and query processing.

• We include in our evaluation a qualitative com-
parison of geospatial RDF stores in order to stress
the differences between them in terms of supported
geospatial features and functionality.

• We also include in our evaluation RDF stores
such as OpenLink Virtuoso which does not have
substantial support of GeoSPARQL6 or that im-
plement only limited geospatial functionality e.g.,
only support for points. We did not include these
systems in experiments presented in our previ-
ous work [16], because we concentrated on sys-
tems that are able to execute the complete bench-
mark. However, a performance comparison be-
tween generic RDF stores with limited geospa-
tial capabilities (e.g., handling only point geome-
tries) and geospatial RDF stores is quite interesting
as it gives an insight about the trade-off between
targeted implementations that cover a subset of
geospatial features and implementations that cover
most of the GeoSPARQL standard. That is why
in this article we added such a comparison and the
performance of the aforementioned fully geospa-
tial RDF stores are compared with Virtuoso and
another proprietary RDF store, called here System
Y, with limited geospatial functionality. For this
purpose, a subset of Geographica was used which
covers only point geometries.

• In [16], we chose to test three well known open
source RDF stores that provide GeoSPARQL func-
tionality, namely Strabon, Parliament and uSeekM.
In this article, we additionally test a proprietary
geospatial RDF store, called here System X7, the

6http://vos.openlinksw.com/owiki/wiki/VOS/
VirtGeoSPARQLEnhancementDocs

7Two proprietary RDF stores are used in this manuscript. We re-
fer to them as System X and System Y since their licenses do not allow
us to reveal their names. However they are still included in our exper-
iments, because it is interesting to have a comparison between open
source systems, that are usually developed in academic environments
and focus on extending the state of the art and proprietary systems,
that mainly focus on serving real applications well.

free edition of the GraphDB v8.6.1 NoSQL graph
database and the RDF4J v2.4.3 Semantic Frame-
work. To the best of our knowledge, these systems
are the only ones that currently provide support for
a rich subset of GeoSPARQL and stSPARQL, so
we did not include any other system in the main
part of Geographica.

The rest of the paper is organized as follows. Sec-
tion 2 presents the main data models and query lan-
guages for linked geospatial data. Section 3 presents
previous related work. Section 4 presents well-known
geospatial RDF stores and compares them in terms of
geospatial functionality that they offer. The benchmark
is described in Section 5 and its results are discussed
in Section 6. Section 7 discusses the performance of
generic RDF stores with limited geospatial capabilities
in comparison to geospatial RDF stores providing full
geospatial capabilities. Finally, the contributions of the
paper are summarized and future work is discussed in
Section 8.

2. Background

In this section, we introduce GeoSPARQL and
stRDF/stSPARQL. GeoSPARQL allows the representa-
tion of geographic data in RDF and querying it using an
extension of SPARQL. stRDF is an extension of RDF
that allows the representation of geospatial linked data
that evolves over time. stSPARQL is an extension of
SPARQL that permits querying stRDF data taking into
account its spatial and temporal dimension.

2.1. GeoSPARQL
GeoSPARQL is a standard, developed by the OGC,

that defines a core RDF/OWL vocabulary and a set
of SPARQL extension functions for representing and
querying linked geospatial data. GeoSPARQL follows a
modular architecture, shown in Figure 1, that defines six
conformance classes. Each implementation may sup-
port one or more conformance classes.

The Core conformance class defines a basic
RDFS/OWL vocabulary for representing geospa-
tial data. This vocabulary includes the class
SpatialObject and its subclasses Feature and
Geometry. Features can have geometries and geome-
tries can be encoded by the OGC standards WKT and
GML. The Topology Vocabulary Extension defines a
vocabulary for asserting topological relations between
spatial objects. This conformance class is parameter-
ized so that an implementation can use any of the well-
known topological relation families: RCC8 [19], Egen-
hofer [20], and OGC SFA. The Geometry Extension
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Figure 1: Conformance class dependency graph of
GeoSPARQL

conformance class defines a vocabulary for asserting
information about geometry data and query functions
operating on geometry data. This class defines the ap-
propriate RDFS datatypes for asserting geometry data
as literal values. A geometry literal can be encoded in
WKT or in GML; this is defined by a parameter of the
conformance class. The Geometry Extension confor-
mance class also defines non-topological functions that
operate on geometry data and return geometry or nu-
meric data (e.g., the distance between two geometries).
The Geometry Topology Extension conformance class
defines topological query functions that operate be-
tween two geometry literals and return if a topological
relation holds between their corresponding geometries.
According to parameters of the Geometry Topology Ex-
tension, GeoSPARQL implementations can support any
of the geometry serializations (WKT, GML) and any of
the aforementioned topology relation families (RCC8,
Egenhofer, OGC SFA). The RDFS Entailment Exten-
sion conformance class defines a mechanism for match-
ing implicitly derived RDF triples in GeoSPARQL
queries. Finally, the Query Rewrite Extension confor-
mance class defines rules to support implication of di-
rect topological predicates between features based on
the geometries of these features. This is achieved by
a set of RIF rules that expand direct topological predi-
cates (from Topology vocabulary) into a series of triple
patterns and an invocation of the corresponding exten-
sion function (from Geometry Topology vocabulary).
For example a RIF rule asserts that if the function
geof:sfIntersects holds between two geometry lit-
erals then the topological relation geo:sfIntersects
holds among the corresponding features. Using these
rules, queries that contain a topological relation be-
tween two variables standing for features (e.g., ?x
geo:sfIntersects ?y) can be re-written into queries
that contain topological functions standing for two liter-
als (e.g., geof:sfIntersects(?f1, ?f2)).

2.2. stRDF and stSPARQL

stRDF and stSPARQL are extensions of RDF and
SPARQL that allow the representation and querying of
linked spatiotemporal data. stSPARQL has been devel-
oped by our group at the same time as GeoSPARQL,
and has resulted in a similar representation model.
stSPARQL, like GeoSPARQL, defines two datatypes
(strdf:WKT, strdf:GML) for encoding geometry lit-
erals and a set of functions that correspond to the
functions of the Geometry extension and the Geom-
etry Topology extension of GeoSPARQL. In addition
to these functions, stSPARQL defines directional rela-
tion functions that are based on the minimum bounding
boxes of two geometries (e.g., if a geometry is strictly
on the left of another geometry) and spatial aggregate
functions that operate on sets of geometries and com-
pute new geometry objects (e.g., the union of a set of ge-
ometries). Note that both GeoSPARQL and stSPARQL
include functions that computes the union of two given
geometry literals, stSPARQL additionally includes a
function computes the union of a given set of geome-
try literals.

In addition to its geospatial features, stRDF has a
temporal component which can represent the valid time
of a triple and stSPARQL defines a set of temporal func-
tions for querying the valid time of triples. The tempo-
ral component of stRDF and stSPARQL are described in
[3] and it will not be considered in the rest of the paper.

3. Related Work

This section discusses the most important bench-
marks that are relevant to Geographica. First bench-
marks for SPARQL query processing are presented, fol-
lowed by those from the geospatial relational databases
area and, finally, we concluded with benchmarks for
querying linked geospatial data.

3.1. Benchmarks for SPARQL Query Processing

A well-known benchmark for Semantic Web knowl-
edge base systems is the Lehigh University Benchmark
(LUBM) [21]. It tests scalability, efficiency and rea-
soning capabilities of memory-based systems and sys-
tems with persistent storage. Concerning reasoning ca-
pabilities three degrees are tested: (i) RDFS reason-
ing, (ii) partial OWL reasoning, and (iii) complete or
almost complete OWL Lite reasoning. The authors pro-
pose a benchmark with fourteen queries over a large
dataset that commits to an ontology describing the uni-
versity domain. This is one of the first benchmarks for
SPARQL query processing and its design is based on
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techniques applied to older database benchmarks. For
example, its data are synthetically generated so that the
data size can be arbitrarily large and the selectivity and
output size of each query can be predefined. Finally,
LUBM uses a set of predefined performance metrics,
namely load time, repository size, and query response
time and it also suggests two new metrics about com-
pleteness and soundness of the query evaluations.

The SPARQL performance benchmark
(SP2Bench) [22] is an RDF benchmark directed
towards a comprehensive performance evaluation of
RDF stores. The authors of this benchmark cover
a wide spectrum of SPARQL features. They define
queries with various SPARQL operators (e.g., UNION,
OPTIONAL, FILTER) and solution modifiers (e.g.,
DISTINCT, ORDER BY, LIMIT) and they also test
negation as failure queries. Queries are grouped in two
categories: (i) long path chains and (ii) bushy patterns
and they are designed so they are amenable to SPARQL
optimization techniques (e.g., triple reordering, FIL-
TER pushing). SP2Bench defines a data generator that
produces datasets resembling the DBLP dataset.

Another SPARQL query processing benchmark is
the Berlin SPARQL Benchmark (BSBM) [23]. This
benchmark compares the performance of native RDF
stores with the performance of SPARQL-to-SQL rewrit-
ers. BSBM uses synthetic data that describes an e-
commerce use case. Different vendors offer prod-
ucts and reviews have been posted about these prod-
ucts by consumers. Unlike the systematic approach
of SP2Bench, the Berlin SPARQL Benchmark uses an
application-based query mix that emulates the search
and navigation pattern of a consumer looking for a prod-
uct. Thus, the query mix covers an adequate range of
SPARQL features but not all of them. Since BSBM is
application-oriented, it uses metrics defined for applica-
tion scenarios and not for single queries, such as query
mixes per hour (QMpH) and queries per second (QpS).

The DBpedia SPARQL benchmark (DBPSB) [24]
follows a different approach and proposes a generic
SPARQL benchmark creation procedure which is based
on real application data and query logs. DBPSB pro-
poses a technique to create data of arbitrary size that
resembles real data. This technique enables increasing
or decreasing the size of a real RDF dataset so that gen-
erated data retains the basic network characteristics (in
and out degree) and other characteristics, such as the
number of classes and properties of the original data.
Also, DBPSB proposes a query analysis technique to
extract representative queries of a set of real queries.
The techniques of DBPSB were applied in the use case

of DBpedia8 but they can be applied to any dataset and
query log to produce a use case specific benchmark.

Finally, the Waterloo SPARQL Diversity Test Suite
(WatDiv) [25] provides stress testing tools for RDF sys-
tems that face diverse queries and varied workloads. It
defines two classes of query features based on which it
discusses the variability of the datasets and workloads in
a SPARQL benchmark: (i) structural features such
as triple pattern count, join vertex count, degree and
type and (ii) data-driven features such as result car-
dinality, filtered triple pattern (f-TP) selectivity, basic
graph patterns (BGPs) restricted f-TP selectivity and
join-restricted f-TP selectivity. The second part of [25]
includes an experimental evaluation of other SPARQL
benchmarks with emphasis on identifying test cases that
are not handled by these benchmarks. The last part of
[25] is an experimental evaluation of five RDF stores
of different architectures using WatDiv, demonstrating
that none of the systems is sufficiently robust across a
diverse set of queries.

3.2. Benchmarks for Geospatial Relational Databases

One of the first benchmarks for spatial databases is
the SEQUOIA benchmark [8] which focuses on Earth
Science use cases and which has been used for test-
ing many Geographic Information Systems (GIS). SE-
QUOIA uses real data (satellite raster data, point loca-
tions of geographic features, land use/land cover poly-
gons and data about drainage networks covering the
area of USA) and real queries. It also considers dif-
ferent scales of datasets and use cases (e.g., local or na-
tional scale). The SEQUOIA benchmark is formed by
11 queries trying to cover the most usual tasks in Earth
Science, like (i) data loading and building of respec-
tive indexes, (ii) raster data management, (iii) selections
based on spatial and non-spatial filters, (iv) spatial joins,
(v) and a recursive spatial query.

SEQUOIA was later extended by [9] to evaluate the
geospatial DBMS Paradise. In [9] DeWitt et al. study
traditional database techniques and how these tech-
niques can be used (or extended to be used) in geospa-
tial query processing. SEQUOIA takes into account
only points and polygons, while [9] also tests polylines
and circles and broadens the tested functionality (e.g.,
it tests spatial aggregate functions). Finally, a method-
ology, called resolution scaleup, is applied to scale up
geospatial data. This technique simulates the zoom-in
operation of map applications. Existing spatial features
are represented in more detail by adding more points to

8https://wiki.dbpedia.org/
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their boundaries, and at the same time new smaller spa-
tial features appear around the existing ones.

Rather than focusing on evaluating performance of
systems, the Á La Carte [10] benchmark compares per-
formance of spatial join techniques. In particular, [10]
tests the following algorithms: nested loops, scan and
index, and synchronized tree traversal. A data generator
is presented that generates rectangles with edges paral-
lel to the axes. The Á La Carte generator enables data
of arbitrary size that can follow various statistical distri-
butions (uniform, normal and exponential). This allows
for the generation of realistic data in terms of spatial dis-
tribution. However, the fact that generated rectangles
have edges parallel to the axes does not allow testing
the full process of spatial evaluation in a DBMS. The
usual workflow of a spatial evaluation is composed of
two steps. The first step utilizes a spatial index, which
is built according to the minimum bounding boxes of
geometries, to find candidate results. This step is called
filtering step. The second step, which is called refine-
ment step, tests the actual geometries and discards false
positives generated by the filtering step. Using rectan-
gles with edges parallel to the axes means that their ac-
tual geometries are identical to their minimum bound-
ing boxes. So, the exact answer is already found by the
filtering step that does not generate any false positive.

In order to generate data and conduct experiments,
Á La Carte defines some statistical models for the gen-
erator that resembles typical cartographic applications.
These models are the following: (i) “Biotopes” simu-
lates a biotope map where there are few large rectangles
uniformly distributed that may overlap but not to a large
degree, (ii) “Cities” simulates the distribution of cities
and it is composed of many small rectangles (modelled
as squares) uniformly distributed around the map, fi-
nally, (iii) a hybrid model is defined that resembles a
word map. This model comprises two nested submod-
els. First, a “Biotopes” model creates the continents of
the world and inside each continent there are rectangles
modelled by the “Cities” model.

A more complex data generator is used in
VESPA [11] to compare PostgresSQL with the Rock
& Roll deductive object-oriented database system. The
data generator of VESPA produces spatial features that
resemble real maps. The spatial features that are pro-
duced by the VESPA generator represent land own-
ership, states, land use, roads, streams, gas lines and
points of interest. They are uniformly distributed, in
contrast to spatial features generated by the Á La Carte
generator, but they are more complex than simple rect-
angles. The dataset consists not only of polygons but
also of lines and points. The produced polygons are

hexagons and triangles, so their edges are not parallel
to the axes and both filtering and refinement step of spa-
tial joins can be tested. Apart from spatial selection and
spatial analysis queries VESPA also tests updates and
spatial aggregate queries which are not tested by previ-
ous benchmarks.

Finally, a more generic benchmark is Jackpine [12].
Jackpine defines two kinds of benchmarking, micro and
macro. Micro benchmarking tests spatial functions in
isolation, in order to evaluate the performance of sys-
tems in evaluating spatial selection, spatial join, and
spatial analysis queries. Macro benchmarking defines
real application scenarios as series of queries and tests
the performance of systems for evaluating the entire se-
ries of queries for each scenario. Tested scenarios range
from simple ones, like geocoding and reverse geocod-
ing, or more complex scenarios like flood risk and toxic
spill analysis.

3.3. Benchmarks for Geospatial RDF Stores
The first published benchmark for querying geospa-

tial data encoded in RDF has been proposed in [14].
[14] extends LUBM to include spatial entities and test
the performance of spatially enabled RDF stores. The
data generator of LUBM is extended so that each univer-
sity, department or student gets a spatial extent (rectan-
gle or point). LUBM queries are extended to cover four
primary types of spatial queries, namely spatial loca-
tion queries, spatial range queries, spatial join queries,
and nearest neighbor queries. Range queries aim to test
cases of various selectivity, while spatial joins aim to
test whether the query planner selects a good plan by
taking into account the selectivity of the spatial and on-
tological part of each query.

Another systematic evaluation of geospatial RDF
stores has been done in [2]. In the context of presenting
the geospatial RDF store Strabon, experiments study-
ing its performance were conducted. Strabon is com-
pared with Parliament [7] and an implementation on
top of RDF-3X [26] that supports spatial queries. In
this evaluation more emphasis is given to study Stra-
bon itself rather than creating a benchmark for various
RDF stores. This is why different variations of Strabon
are studied in order to demonstrate advantages and dis-
advantages of different implementation choices. Two
workloads are used: one based on real world linked
data and a synthetic one. The first workload consists
of eight real world queries that are either frequently
used in Semantic Web applications (e.g., DBpedia and
LinkedGeoData endpoints) or they demonstrate the spa-
tial extensions of Strabon. This workload contains the-
matic queries as well as spatial selection and spatial join
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queries and queries using non-topological spatial func-
tions. The second workload uses a modified version of
the data generator of [18] to generate spatial datasets
with arbitrary size and predefined characteristics. The
data generator produces spatial data with point geome-
tries and only spatial query selections are studied.

Recently in [15], Patroumpas et al. have reviewed
the state of the art in managing geospatial data in the
Semantic Web. [15] starts by presenting basic concepts
and standards (e.g., GeoSPARQL) about geospatial data
in the Semantic Web, then it presents the current state of
the art geospatial RDF stores and a qualitative compar-
ison between them. Finally, [15] presents and performs
an evaluation of the performance of the geospatial RDF
stores. For this evaluation, [15] uses data from Open-
StreetMap and it follows the guidelines of [14] to de-
fine a query workload. This workload consists of ba-
sic queries that cover the four primary types of spatial
queries that has been suggested in [14] and geospatial
analysis queries that cover query types not studied in
[14]. These are queries that use non-topological spatial
functions, combine thematic and spatial criteria, and ag-
gregate and negation queries that use spatial filters.

Geographica goes beyond the above benchmarks [14,
16, 15] as it is the first benchmark that combines all of
the following features. It contains a real world work-
load that uses publicly available linked geospatial data,
covering a wide range of geometry types (e.g., points,
lines, polygons). The real world workload follows the
approach of the benchmark Jackpine [12] and defines a
micro benchmark and a macro benchmark. The micro
benchmark tests primitive spatial functions. The spa-
tial component of a system is tested with queries that
use non-topological functions, spatial selections, spatial
joins and spatial aggregate functions. The macro bench-
mark tests performance of selected RDF stores in typ-
ical application scenarios like reverse geocoding, map
search and browsing and a real world use case from the
EO domain. It also contains of a synthetic workload, us-
ing a generator that produces synthetic datasets of vari-
ous sizes and generates queries of varying thematic and
spatial selectivity. In this way, performance of geospa-
tial RDF stores can be studied in a closely controlled
environment. This workload follows the rationale of
earlier papers [11, 2, 18].

4. A Functional Comparison of Geospatial RDF
Stores

This section presents all of the RDF stores known to
the authors that implement some geospatial functional-

ity, and compares them in terms of the geospatial func-
tionality that they offer.

Although GeoSPARQL is an OGC standard since
2012, it is not fully supported by any geospatial RDF
store. Usually systems do not implement the Query-
Rewrite Extention. Also there are some RDF stores
that provide geospatial capabilities which are limited to
point geometries.

A common problem area is CRS support. A coor-
dinate reference system (CRS) also referred to as spa-
tial reference system (SRS) is a coordinate system that
is related to an object (e.g., the Earth) through a da-
tum which specifies its origin, scale, and orientation.
Authorities that maintain partial or non fully compati-
ble lists of CRSs include OGC which maintains a set
of CRS URIs9 and the International Association of Oil
and Gas Producers (IOGP)10 which after the absorption
of the European Petroleum Survey Group (EPSG) main-
tains the EPSG online registry of geodetic parameters11.

We organize our comparison according to the
GeoSPARQL standard. We indicate which extensions
of GeoSPARQL are supported by each RDF store,
which spatial relation classes and geometry serialization
formats are implemented, and whether multiple CRSs
are supported. We have also included a selection of
available geospatial extensions which are not part of
GeoSPARQL, such as the use of geometry literals as
objects in triple patterns, the spatial aggregate functions
defined by stSPARQL [2] and three main spatial query
classes that are used for querying points. A tabular view
of this comparison can be found in Table 1. The rest of
the section essentially explains the contents of Table 1
by discussing in detail the functionality of each system.

4.1. Geospatial RDF Stores that Conform to the
GeoSPARQL Standard

The system Strabon, which has been developed by
our group, is a storage and query evaluation module for
stRDF/stSPARQL [2]. Strabon extends the well-known
RDF store Sesame, allowing it to manage both thematic
and spatial data expressed in stRDF and stored in the
PostGIS spatially enabled DBMS. The version 3.2.9 of
Strabon fully implements stSPARQL, which provides
the machinery of the OGC SFA standard as well as
spatial aggregation functions, other useful spatial func-
tions (e.g., directional relations) and temporal exten-
sion functions. Given the close relationship between

9http://www.opengis.net/def/crs/
10https://www.iogp.org/
11https://www.epsg-registry.org/
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System Strabon uSeekM Parliament System X Virtuoso System Y GraphDB RDF4J

GeoSPARQL
Core yes yes yes yes no no yes yes

Topology Vocabulary no yes yes yes no no yes no
Geometry yes partial yes yes no no partial partial

Geometry Topology yes yes yes yes no no yes yes
Query Rewrite no no no no no no no no

RDFS Entailment no yes yes yes no no yes yes

Relation classes
OGC-SFA yes yes yes yes no no yes yes
Egenhofer yes yes yes no no no yes yes

RCC8 yes yes yes no no no yes yes

Geometry Serializations
WKT yes yes yes yes partial no yes yes
GML yes [GML-SF] no yes [GML-SF] no no no no no

CRS support yes no yes yes partial partial no no

Functionality not described by GeoSPARQL
Aggregation yes no no no no no no no

Geometry literal as Object no no no no no no yes no

Specific functionality for RDF stores with limited geospatial capabilities
Buffer yes yes yes yes yes yes yes yes

Distance yes yes yes yes yes yes yes yes
Bounding Box yes yes yes yes yes no yes yes

Table 1: Functionality of geospatial RDF stores

stSPARQL and GeoSPARQL [6], it was straightforward
to implement the relevant subset of GeoSPARQL in
Strabon. Strabon implements fully the Core, Geometry
Extension and Geometry Topology Extension compo-
nents of GeoSPARQL. It supports all three topological
relation classes defined by GeoSPARQL (OGC-SFA,
Egenhofer, RCC8), both geometry serializations (WKT,
GML) and multiple CRS.

OpenSahara uSeekM12 also builds upon the RDF
store Sesame. uSeekM is based on the native store
of Sesame to store and query thematic information
and it utilizes PostGIS for storing and querying spatial
data. uSeekM supports the majority of GeoSPARQL,
namely the GeoSPARQL Core, Topology Vocabulary
Extension, Geometry Topology Extension, RDFS En-
tailment Extension components and partially the Ge-
ometry Extension. uSeekM implements all three re-
lation family classes (OGC SFA, Egenhofer, RCC8).
Since the implementation does not use URIs for coordi-
nate reference systems, it does not conform to require-
ment 2013, because geof:getSRID() returns an inte-
ger instead of a URI, and fails requirement 1214 of the
GeoSPARQL standard, because axis order interpreta-
tion in geo:wktLiterals is fixed lon-lat/x-y ordering
and not derived by the spatial reference system of the

12https://opensahara.com/projects/useekm/
13https://opensahara.com/issues/675
14https://opensahara.com/issues/675

literal. It supports only the WKT serialization for ge-
ometries in WGS84 CRS. Therefore, the Geometry Ex-
tension support is marked as partial. Finally, uSeekM
implements some extension functions (not defined by
GeoSPARQL), which compute, for example, the area of
a geometry and the shortest line between two geome-
tries accordingly. For spatial indexing uSeekM utilizes
a PostGIS database to create an R-Tree-over-GiST [27].
The optimizer will check whether the query evaluation
will benefit from the extra index and if so, the spatial
part of the query is executed by PostGIS using the R-
Tree and the rest of the query is executed by the native
store of Sesame.

The RDF store Parliament15 [7] implements most
of the functionality of GeoSPARQL except the Query
Rewrite Extension. Both WKT and GML serializa-
tions are supported as well as multiple CRS and all
three topological relation family classes. Unlike Stra-
bon and uSeekM, which detect spatial objects from
their datatype, Parliament works as follows. The RDF
graph is scanned for triples that contain geo:asWKT or
geo:asGML predicates and for each matching triple Par-
liament creates a record for the geometry that is repre-
sented in the object of the triple and inserts it into its
spatial index (a standard R-tree implementation). The
query optimizer tries to split SPARQL queries into mul-
tiple parts and produce an optimized query plan between

15http://parliament.semwebcentral.org/
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the spatial and thematic components of the query. The
current version of Parliament (v2.7.4) concentrates on
optimizing query patterns (using the Topology Vocabu-
lary extension of GeoSPARQL) while it omits optimiza-
tion for functions in the filter clause of a query. How-
ever, when the topological comparisons are included
in the triple patterns as predicates instead of the cor-
responding filter functions, the optimizer of Parliament
takes both thematic and spatial dimensions into consid-
eration in order to produce a better plan.

The proprietary RDF store System X also supports
the GeoSPARQL standard for representing and query-
ing geospatial data in RDF. System X supports the Core,
Topology Vocabulary Extension, Geometry Extension,
Geometry Topology Extension, and RDFS Entailment
Extension components of GeoSPARQL. Multiple CRS
are supported but only the WKT geometry serialization
and the OGC SFA relation family class are supported.
Additionally, System X offers some specific functions
that are not defined by GeoSPARQL, such as comput-
ing the area or the minimum bounding rectangle of a
geometry, computing the union of two geometries, etc.
System X uses an R-Tree to index spatial data. When
creating a spatial index, a user should define the CRS
which will be used to create the spatial index, the min-
imum and maximum value for each dimension of data
and a positive number indicating how close together two
points must be to be considered the same point.

RDF4J16 is a Java-based RDF framework which
provides for creating, parsing, reasoning and querying
over linked data. It offers two core store NoSQL imple-
mentations. The Memory Store allows the creation of a
very fast transactional RDF repository in main memory
with optional persistence to disk. A more scalable
alternative which allows the creation of transactional
RDF repository of up to a hundred millions of triples
is the Native Store, which uses direct disk I/O for per-
sistence. Many of the systems examined in this paper
have extended the precursor of RDF4J, Sesame, which
additionally offered out of the box a third repository
implementation, the RDBMS Store supporting persis-
tence in PostgreSQL and MySQL database systems.
Its architecture allows for constructing repositories
in a layered approach using Sails(Storage And
Inference Layer) adding storage and inference
options. Starting from October 2018 and version 2.4.3,
RDF4J offers adequate geospatial functionality and
GeoSPARQL support through the use of Location-

16http://rdf4j.org/

Tech’s Spatial4J17 and JTS18 libraries. RDF4J supports
the Core, Geometry Topology Extension, RDFS Entail-
ment Extension and partially the Geometry Extension
components of GeoSPARQL. It supports all three topo-
logical relation classes (OGC-SFA, Egenhofer, RCC8),
non-topological and common query functions and the
WKT geometry serialization. Repositories can use the
RDFS Inference Sail. Although GeoSPARQL is sup-
ported natively on all types of store implementations,
geospatial querying on large datasets is advertized to
benefit when enabling the Lucene Sail which spatially
indexes a customizable list of fields that contain the
<http://www.opengis.net/ont/geosparql#asWKT>
field by default.

GraphDB19 v8.6.1 (formerly known as OWLIM) is a
NoSQL semantic graph database enhanced with geospa-
tial capabilities and it is the flagship product of company
Ontotext. GraphDB is implemented as a SAIL (Storage
and Inference Layer) of the RDF4J Framework v2.3.2
and can support billions of triples per server. The sup-
ported semantics, which are RDF rule-entailment by de-
fault, can be configured through ruleset definitions such
as RDFS with OWL Lite and OWL2 profiles RL and
QL. GraphDB supports the Core, Topology Vocabulary
Extension, Geometry Topology Extension, and RDFS
Entailment Extension and partially the Geometry Ex-
tension components of GeoSPARQL. Only the WKT
geometry serialization and the default WGS84 CRS are
supported. It supports all three topological relation
classes (OGC SFA, Egenhofer, RCC8). A provided ex-
tension which is not part of the GeoSPARQL specifica-
tion is the ability to use geometry literals in the object
position of triple patterns. For its geospatial capabil-
ities it relies on a uSeekM implementation. The spa-
tial index mechanism is controlled through an optional
GeoSPARQL-plugin. The plugin supports two ap-
proximate matching indexing algorithms, a quad prefix
tree [28], which is the default option, and a geohash pre-
fix tree [29], each one with a different range of accuracy
values. GraphDB also provides support for the WGS84
Geo Positioning RDF vocabulary20 which allows
for the representation of latitude, longitude and altitude
of features with geo-spatial index and basic operations
such as distance calculation between points, filtering
points within a rectangle, polygon or circle.

17https://projects.eclipse.org/projects/
locationtech.spatial4j

18https://projects.eclipse.org/projects/
locationtech.jts

19http://graphdb.ontotext.com/documentation/free/
20https://www.w3.org/2003/01/geo/wgs84_pos
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4.2. RDF Stores with Limited Geospatial Capabilities

OpenLink Virtuoso21 provides geospatial support for
representing and querying two-dimensional point ge-
ometries. Virtuoso allows geometries to be expressed
either in WGS84 or a flat two-dimensional plane.
Virtuoso does not support GeoSPARQL but it mod-
els geometries by typed literals like stSPARQL and
GeoSPARQL. For this purpose, it introduces its own
datatype virtrdf:Geometry. The value of such a
literal is the WKT serialization of a point. Virtu-
oso offers vocabulary for a subset of the ISO 13249
SQL/MM standard [30] to perform geospatial queries
using SPARQL. For example, a user can ask for
points in a region utilizing SPARQL functions corre-
sponding to the st_intersects, st_contains, and
st_within SQL/MM functions. Note that these func-
tions are extended with a third argument (called preci-
sion) which specifies a maximum distance between two
points such that the points will still be considered to
overlap with each other. Thus, these functions can sup-
port buffer queries exploiting the spatial index of Virtu-
oso. Virtuoso utilizes an R-tree index implemented as a
table in the relational database component of Virtuoso.
It is worth mentioning that we also had the opportunity
to examine the development branch v7.2.6-rc1 of Vir-
tuoso OpenSource Server available since early October
2018 which introduced some features of GeoSPARQL.
However, there was still not enough support for several
of the features that we evaluate in our benchmark, so we
decided that it would only be fair to continue our exper-
iments, once a more stable release of Virtuoso support-
ing these features becomes available.

The proprietary RDF store System Y, also provides
limited support for geospatial data. System Y can store
and query only points. Support is provided both for
Cartesian coordinate systems and for spherical coor-
dinate systems but not for standard geographic CRS,
like those maintained by the IOGP. System Y supports
only range queries (points within a rectangle or a circle)
utilizing either property functions22 or a non SPARQL
compliant syntax.

5. The Benchmark Geographica 2

This section presents in detail the benchmark Geo-
graphica 2 which extends our earlier benchmark Geo-
graphica [16]. Section 5.1 presents its first part (the real

21http://virtuoso.openlinksw.com/
22https://www.w3.org/wiki/SPARQL/Extensions/

Computed_Properties

world workload) while Section 5.2 presents the second
part (the synthetic workload).

5.1. Real World Workload
This workload aims at evaluating the efficiency of ba-

sic spatial functions that a geospatial RDF store should
offer. In addition, this workload includes five real use
case application scenarios.

5.1.1. Datasets
In this section we describe the datasets that we use

for the real world workload. We have datasets that are
part of the Linked Open Data Cloud, such as the Greek
version of DBpedia and part of the GeoNames dataset
referring to Greece.

DBpedia is a crowd-sourced knowledge base that
contains structured information from Wikipedia. DBpe-
dia contains also geographic information for its articles.
For example a point position for a country, a city or a
building.

GeoNames23 is a crowd-sourced geographical
database containing more than eleven million unique
features. These placenames are classified according to
a two-level schema. The first level uses very generic
categories. For example, a point may be characterized
as a waterbody or some kind of facility. The second
level narrows down to very specific categories. For
example a waterbody may characterized as a river, a
lake, etc., while a facility may characterized as a bank,
a hospital, etc. Each point in Geonames is a pair of
latitude and longitude in CRS WGS84. More complex
geometries (e.g., lines or polygons) are not included.

Since the spatial information of GeoNames and DB-
pedia is limited to points, datasets with richer spatial in-
formation are also used in Geographica 2. LinkedGeo-
Data24 (LGD) is a project which in 2009 made OSM
data available on the Web as linked data [31]. We have
included a part of the OSM dataset about the motorways
and rivers of Greece.

We also chose to use a dataset containing geometries
of Greek municipalities defined by the Greek Admin-
istrative Geography25 (GAG) and the CORINE Land
Cover26 (CLC) dataset for Greece which have complex
polygons. The CLC dataset is made available by the Eu-
ropean Environmental Agency for the whole of Europe

23http://www.geonames.org/
24http://linkedgeodata.org/
25http://www.linkedopendata.gr/dataset/

greek-administrative-geography/
26http://www.linkedopendata.gr/dataset/

corine-land-cover-of-greece
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and contains data regarding the land cover of European
countries. Both of these datasets with information about
Greece have been published as linked data by us in the
context of the European project TELEIOS27.

Finally, Geographica 2 includes a dataset contain-
ing polygons that represent wild-fire hotspots. This
dataset has been produced by the National Observatory
of Athens (NOA) in the context of project TELEIOS
by processing appropriate satellite images as described
in [32]. Each dataset is loaded in a separate named
graph so that each query access only the part of the
dataset that is needed.

All the aforementioned datasets were loaded in a
common repository for each RDF store and they were
used for all experiments of the real world workload
of Geographica apart from the "Geocoding" scenario,
that is described in Section 5.1.3. This scenario re-
quires detailed information about street addresses (e.g.,
zip code and building number) which is not provided
in any of the above datasets. So, the "Geocoding" sce-
nario uses data about the street network of New York
that is publicly available as part of TIGER (Topologi-
cally Integrated Geographic Encoding and Referencing)
products28 produced by the US Census Bureau29. This
dataset contains geometries of streets of New York as
linestrings and address information like street name, zip
code, building numbers, etc. It has been stored in a sep-
arate repository for each RDF store and it was used only
for the "Geocoding" scenario.

Table 2 describes important characteristics of the
datasets. In this table the size of each dataset is pre-
sented in MB and the number of contained triples. The
size in MB is calculated from uncompressed text files
in N-Triples syntax. Also, Table 2 presents the type
and number of geometries that each dataset contains. In
parenthesis we give the maximum, minimum and aver-
age number of points per geometry to give an insight of
the geometry complexity for each dataset.

5.1.2. Micro Benchmark
The micro benchmark aims at testing the efficiency

of primitive spatial functions in state of the art geospa-
tial RDF stores. Thus, it uses simple SPARQL queries
which consist of one or two triple patterns and a spa-
tial function. In this way, the spatial module is stressed
instead of the basic triple pattern matching module of
RDF stores. First, simple spatial selections are tested.

27http://www.earthobservatory.eu/
28http://www.census.gov/geo/maps-data/data/tiger.

html
29http://www.census.gov/

Next, more complex operations such as spatial joins are
tested. Spatial joins are tested using the topological
relations defined in stSPARQL [2] and the Geometry
Topology Extension component of GeoSPARQL.

Table 3 summarizes the combinations between topo-
logical relations and geometry types that are tested by
Geographica 2. In Table 3(a) columns indicate the ge-
ometry type of the constant used for the spatial selec-
tions and rows indicate the geometry type of retrieved
spatial features. In Table 3(b) both columns and rows
indicate the geometry types that participate in each join
query. In parenthesis the datasets that participate in ev-
ery query are reported. The possible combinations of
geometry types and topological relations are too many
and it would be pointless to exhaustively test all of them.
Thus, we selected an interesting part of this combina-
tions based on previous work (e.g. [12]) and our experi-
ence in building geographical applications. All topolog-
ical functions defined by the OGC SFA relation family
and every geometry type combination are included at
least once. Mainly, we focus on topological relations
including polygons since polygon is the most complex
2-D geometry type which can form many topological
relations and is the most demanding geometry type to
handle.

Apart from topological relations, the micro
benchmark tests non-topological functions (e.g.,
geof:buffer), defined by the Geometry Extension of
GeoSPARQL, which construct new geometry objects
from existing ones. Additionally, a metric function
for evaluating the area of a polygon is tested. This
function is not defined by GeoSPARQL, but it is
supported by almost all tested geospatial RDF stores
(Strabon, uSeekM, System X, GraphDB). The aggre-
gate functions strdf:extent, and strdf:union of
stSPARQL are also included in the evaluation although
the GeoSPARQL standard does not define them. We
include aggregate functions in Geographica since they
are present in all geospatial RDBMS, and we found
them very useful in EO applications in the context
of the project TELEIOS [32]. A short description of
queries used in the micro benchmark can be found in
Table 4 and the full SPARQL queries can be found
online30.

5.1.3. Macro Benchmark
The macro benchmark tests the performance of the

selected RDF stores in three typical application scenar-
ios, namely "Geocoding", "Reverse Geocoding", and

30http://geographica.di.uoa.gr/
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# of Lines # of Polygons
Datasets Size Triples # of Points (max/min/avg # of (max/min/avg # of

points per line) points per polygon)
GAG 33MB 4K - - 325 (14K/4/192)
CLC 401MB 630K - - 45K (15K/4/171)

OSM (only ways) 29MB 150K - 12K (1.6K/2/21) -
GeoNames 45MB 400K 22K - -
DBpedia 89MB 430K 8K - -
Hotspots 90MB 450K - - 37K (4/4/4)
Census 3.3GB 23M - 894K (262/2/6) -

Table 2: Dataset characteristics

(a)
Query Point Query Line Query Polygon

Point (GeoNames) Within Buffer - Within
In Distance Disjoint

Line (OSM) -
Equals Intersects
Crosses Disjoint

Polygon (CLC)
-

Intersects Overlaps
(GAG) Equals

(b)
Point (DBpedia) Line (OSM) Polygon (GAG)

Point (GeoNames) Equals Intersects Intersects
Within

Line (OSM) - -
Intersects

Within
Crosses

Polygon(CLC)
- -

Within
(CLC) Overlaps
(GAG) Touches

Table 3: Topological relations tested in (a) spatial selections and (b) spatial joins

Query Operation Description
Non-topological construct functions
Q1 Boundary Construct the boundary of all polygons of CLC
Q2 Envelope Construct the envelope of all polygons of CLC
Q3 Convex Hull Construct the convex hull of all polygons of CLC
Q4 Buffer Construct the buffer of all points of GeoNames
Q5 Buffer Construct the buffer of all lines of OSM
Q6 Area Compute the area of all polygons of CLC
Spatial selections
Q7 Equals Find all lines of OSM that are spatially equal with a given line
Q8 Equals Find all polygons of GAG that are spatially equal a given polygon
Q9 Intersects Find all lines of OSM that spatially intersect with a given polygon
Q10 Intersects Find all polygons of CLC that spatially intersect with a given line
Q11 Overlaps Find all polygons of CLC that spatially overlap with a given polygon
Q12 Crosses Find all lines of OSM that spatially cross a given line
Q13 Within polygon Find all points of GeoNames that are contained in a given polygon
Q14 Within buffer of a

point
Find all points of GeoNames that are contained in the buffer of a given point

Q15 Near a point Find all points of GeoNames that are within specific distance from a given point
Q16 Disjoint Find all points of GeoNames that are spatially disjoint of a given polygon
Q17 Disjoint Find all lines of OSM that are spatially disjoint of a given polygon
Spatial joins
Q18 Equals Find all points of GeoNames that are spatially equal with a point of DBpedia
Q19 Intersects Find all points of GeoNames that spatially intersect a line of OSM
Q20 Intersects Find all points of GeoNames that spatially intersect a polygon of GAG
Q21 Intersects Find all lines of OSM that spatially intersect a polygon of GAG
Q22 Within Find all points of GeoNames that are within a polygon of GAG
Q23 Within Find all lines of OSM that are within a polygon of GAG
Q24 Within Find all polygons of CLC that are within a polygon of GAG
Q25 Crosses Find all lines of OSM that spatially cross a polygon of GAG
Q26 Touches Find all polygons of GAG that spatially touch other polygons of GAG
Q27 Overlaps Find all polygons of CLC that spatially overlap polygons of GAG
Aggregate functions
Q28 Extension Construct the extension of all polygons of GAG
Q29 Union Construct the union of all polygons of GAG

Table 4: Queries of the micro benchmark
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"Map Search and Browsing" and two more sophisti-
cated scenarios from the EO domain, namely "Rapid
Mapping for Fire Monitoring" and "Computing Statis-
tics of Geospatial Datasets". Descriptions of the queries
associated with these scenarios can be found in Table 5
and SPARQL templates used to generate these queries
are provided on the site of the benchmark.

Geocoding. Geocoding is the process of finding the
coordinates of a feature based on other geographic data,
such as street address, house number, city, country, etc.
The simplest method of geocoding is called address
geocoding and is applied to street network data that con-
tain street segments and address ranges for each seg-
ment. The address range of a street segment is the mini-
mum and maximum house numbers that are attributed to
this street segment. Usually, two address ranges are as-
signed to a street segment, one for its left side and one
for its right one. A geocoding query retrieves a street
segment based on thematic criteria and then interpolates
its geometry within the address range to estimate the po-
sition of the given house number. Imagine a user who
is looking for the Metropolitan Museum of Art in New
York (address is 1000 5th Avenue, New York, 10028).
A geocoding query will retrieve a street segment with
name "5th Avenue", ZIP code equal to 10028 and an ad-
dress range that contains even numbers including 1000
(e.g., from 998 to 1002). Then taking into account the
spatial extent and the minimum and maximum numbers
of this segment an estimation of the position of the mu-
seum in 5th Avenue is calculated and returned to the
user.

Because neither GeoSPARQL nor any geospatial
RDF store offer any sophisticated function for geome-
try interpolation, used queries perform a simple linear
interpolation between the start and end points of a street
segment. This scenario tests two identical queries that
search the left and right sides of streets and they return
a point estimation for the given address number and the
actual geometry of the street segment that is matched
to the given address. This scenario, uses the Census
dataset that is described in Section 5.1.1. Address
ranges are published by Census Bureau as ESRI shape-
files. Each shapefile contains a relational table and each
tuple of the table represents a street segment. The main
contents of the shapefile can be modelled as the rela-
tion: StreetSegment(geo GEOMETRY, fullname
VARCHAR, lfromhn NUMBER, ltohn NUMBER,
rfromhn NUMBER, rtohn NUMBER, parityl
VARCHAR, parityr VARCHAR, zipl VARCHAR,
zipr VARCHAR). In this relation geo represents the
geometry of a road segment and fullname its name.
The minimum and maximum house numbers of the

left (right) side of a road are represented by lfromhn
(rfromhn) and ltohn (rtohn). One side of a road
usually has only odd or even house numbers. This is
indicated by parityl and parityr that take the values
"O" for only odd numbers, "E" for only even numbers,
and "B" if a road side has both odd and even house
numbers. The zip code of a road side is represented
by zipl and zipr. Finally, in order to simplify the
linear interpolation computation, the following extra
attributes are added: minx NUMBER, maxx NUMBER,
miny NUMBER, maxy NUMBER. These attributes rep-
resent the coordinates of the extreme points of a road
segment. This data was transformed into RDF in a
straightforward way. For each tuple of the table an
instance of the class StreetSegment was generated
and for every column of the table a data property
that associates the StreetSegment instance with the
relevant value from the table column was created. This
transformation resulted in 23 million triples and 1
million linestrings. Also a list of addresses composed
by a street name, a zip code, and a building number
is exported. For each iteration of this scenario an
address is randomly selected by this list, the queries
are produced using the corresponding SPARQL query
templates, populating them with the street name, the
zip code, the building number and the parity of the
number (even or odd) of the selected address and the
estimated coordinates of this address is retrieved. This
random sequence of addresses is generated using a
pseudo-random number generator, which is initialized
with the same seed for every experiment run. The
same process is repeated for the initialization of each
iteration of the other scenarios thus, the experiments of
the macro benchmark are repeatable.

Reverse Geocoding. Reverse geocoding is the pro-
cess of attributing a readable address or place name to
a given point. This scenario tests two nearest neighbor
queries which retrieve the nearest point (from GeoN-
ames) and the nearest motorway (from OSM) of the
given point. To achieve this nearest neighbor functional-
ity the queries of this scenario sort retrieved geometries
by their distance to the given point and select the first
one. Every iteration of this scenario is initialized with a
given point. This point is picked at random from a list
of point coordinates extracted from GeoNames.

Map Search and Browsing. This scenario demon-
strates the queries that are typically used in Web-based
mapping applications. A user first searches for points of
interest based on thematic criteria. Then, he/she selects
a specific point and information about the area around
it is retrieved (e.g., POI and roads). Similarly to the
"Reverse Geocoding" scenario, this scenario is initial-
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Query Description
Geocoding
G1 Geocode left side of roads (from Census)
G2 Geocode right side of roads (from Census)
Reverse Geocoding
RG1 Find the closest populated place (from GeoNames)
RG2 Find the closest motorway (from OSM)
Map Search and Browsing
MSB1 Find the co-ordinates of a given POI based on thematic criteria (from GeoNames)
MSB2 Find other POI in a given bounding box around these co-ordinates (from GeoNames)
MSB3 Find roads in a given bounding box around these co-ordinates (from OSM)
Rapid Mapping for Fire Monitoring
RM1 Find the land cover of areas inside a given bounding box (from CLC)
RM2 Find primary roads inside a given bounding box (from OSM)
RM3 Find municipality boundaries inside a given bounding box (from GAG)
RM4 Find detected hotspots inside a given bounding box (from Hotspots)
RM5 Find coniferous forests inside a given bounding box which are on fire (from CLC and

Hotspots)
RM6 Find road segments inside a given bounding box which may be damaged by fire (from

OSM and Hotspots)
Computing Statistics of Geospatial Datasets
CS1 Compute how many instances of each CLC class exist in a municipality (from CLC)
CS2 Compute how many instances of each GeoNames class exist in a municipality

(from GeoNames)
CS3 Compute how many instances of each GeoNames class exist in areas characterized as

”Continuous Urban Fabric” according to CLC (from GeoNames and CLC)

Table 5: Queries of the macro benchmark

ized by picking at random a toponym from a list of to-
ponyms extracted by GeoNames. The coordinates of
this toponym is retrieved by the first query of the sce-
nario. Then, these coordinates are used to create an area
of interest which is used by the remaining two queries.
These queries retrieve points of interest (from GeoN-
ames) and roads (from OSM) that lie inside this area.

Rapid Mapping for Wild Fire Monitoring. This sce-
nario tests queries which retrieve map layers for creat-
ing a map that can be used by decision makers tasked
with the monitoring of wild fires. This application has
been studied in detail in project TELEIOS [32] and the
scenario covers its core querying needs. First, spatial
selections are used to retrieve basic information of in-
terest (e.g., roads, administrative areas, etc.). Second,
more complex information can be derived using spa-
tial joins and non-topological functions. For example, a
user may be interested in those road segments damaged
by fire. We point out that this scenario is representative
of many rapid mapping tasks encountered in EO appli-
cations. Again, a list of areas, and the relevant time,
where fire occured has been compiled by data from the
real fire monitoring application and used to randomly
initialize each iteration of this scenario.

Computing Statistics of Geospatial Datasets. This
scenario concentrates on generating a high level
overview of geospatial datasets by calculating summary
statistics (e.g., how many fields are identified as agri-
cultural by a dataset) and discovering correlations be-
tween different datasets describing the same geograph-

ical area (e.g., how many farms in Crete, according to
GeoNames, lie in areas that are identified as agricul-
tural areas by CLC). Since geospatial datasets are pro-
duced in many ways (e.g., contributed by users, pro-
duced by experts using surveys, satellite images, aerial
photographs, etc.) such overviews and comparisons are
meaningful and interesting for specialists. An example
of user-contributed data is GeoNames. In this dataset,
users provide information about points on a map and
a two level schema, with various classes, is used to
characterize these geographic features with broad terms
(e.g., administrative division, waterbody, road) or more
specific terms (e.g., village, lake, tunnel). On the other
hand, specialists, such as geographers and cartogra-
phers, have compiled information originated from aerial
photographs, topographic maps, satellite images, etc. to
create the CLC dataset, that provides information about
the land cover in European countries using a more tar-
geted schema with broader terms (e.g., urban fabric,
agricultural area, etc.). Despite the fact that these two
datasets contain different kinds of information, the com-
parison between them can help to evaluate the consis-
tency between these datasets in order to validate the pro-
vided information. For example a useful query would
be to discover the kind of geographic features, accord-
ing to GeoNames, that are contained in areas of CLC
with specific land use. It is expected that urban ar-
eas should contain more features identified as roads,
buildings, bus/metro stations etc., while agricultural ar-
eas should contain more geographic features identified
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as farms, irrigated fields, plantations, etc. In project
TELEIOS we investigated such a scenario in collabo-
ration with the German Aerospace Center (DLR).

DLR used the knowledge discovery and data min-
ing framework for satellite images presented in [33] to
identify semantic classes of geographic features (e.g.,
parking area, port, etc.) in radar images from the
archive of the TerraSAR-X satellite. Since the knowl-
edge discovery and data mining framework relies on
semi-supervised machine learning techniques, the com-
parison of the DLR classification with classifications of
other datasets can prove important for the training phase
of these techniques but also for evaluating the effective-
ness of the framework.

This scenario is composed of three queries that rep-
resent two main query categories that were useful in
the DLR use case of the project TELEIOS. The first
category (first level statistics) computes statistics about
one dataset (e.g., compute the distribution of CLC
classes in a city). The second category (second level
statistics) helps to investigate possible correlations be-
tween datasets by computing statistics that involve two
datasets (e.g., compute how many instances of each
GeoNames class lie in areas characterized as "continu-
ous urban fabric" by CLC). Such queries are usually ap-
plied for a specific area (e.g., a city, a country). A list of
the minimum bounding rectangles of all Greek munici-
palities have been created and for each iteration of this
scenario the queries are applied to a randomly selected
bounding rectangle. The main characteristic of these
queries is that they compute aggregations over spatial
selections of a dataset and spatial joins between two
datasets. The results of the queries can later be visual-
ized (e.g., on a chart) to provide insights on the correla-
tions of these datasets. Since the classification that was
produced using the techniques developed by DLR is not
freely available, we decided to use the publicly available
dataset GeoNames to keep our experiments easily repro-
ducible. This scenario, also, compares GeoNames with
information from CLC which is also publicly available.

5.2. Synthetic Workload

The synthetic workload of Geographica 2 relies on
a generator that produces synthetic datasets of various
sizes and instantiates query templates that can produce
queries with varying thematic and spatial selectivity. In
this way, the evaluation of geospatial RDF stores can be
performed in a controlled environment in order to mea-
sure their performance with great precision. The syn-
thetic generator is a component of Geographica 2 and is
distributed freely as open-source software.

5.2.1. Datasets

The workload generator produces synthetic datasets
of arbitrary size that resemble features on a map. As in
VESPA [11], the produced datasets model the follow-
ing geographic features: states in a country, land own-
ership, roads and points of interest. For each dataset,
we developed a minimal ontology that follows a general
version of the schema of OSM and uses GeoSPARQL
ontologies and vocabularies. In Figure 2(a) the devel-
oped ontology for representing points of interest is pre-
sented. As in [18, 2], every feature (i.e., point of inter-
est) is assigned a number of thematic tags each of which
consists of a key-value pair of strings. Each feature is
tagged with key 1, every other feature with key 2, every
fourth feature with key 4, etc. up to key 2k, k ∈ N. This
tagging makes it possible to select different parts of the
entire dataset in a uniform way, and perform queries of
various thematic selectivities. For example, if we se-
lected all points of interest tagged with key 1, we would
retrieve all available points of interest, if we selected all
points of interest tagged with key 2, we would retrieve
half of them, etc.

Every feature has a spatial extent that is modelled us-
ing the GeoSPARQL vocabulary. The spatial extent of
the land ownership dataset constitutes a uniform grid of
n × n hexagons. The land ownership dataset forms the
basis for the spatial extent of all generated datasets since
the size of each dataset is given relatively to the number
n. By modifying the number of hexagons along an axis,
datasets of arbitrary size can be produced. As we will
see in the following section, this enabled us to adjust the
selectivity of the spatial predicates appearing in queries
in a uniform way too.

As in [11], the generated land ownership dataset con-
sists of n2 features with hexagonal spatial extent, where
each hexagon is placed uniformly on a n × n grid. The
cardinality of the land ownerships is n2. The generated
state dataset consists of ( n

3 )2 features with hexagonal
spatial extent, where each hexagon is placed uniformly
on a n

3 ×
n
3 grid. The cardinality of the state geome-

tries is ( n
3 )2. The generated road dataset consists of n

features with sloping line geometries. Half of the line
geometries are roughly horizontal and the other half are
roughly vertical. Each line consists of n

2 + 1 line seg-
ments. The cardinality of the road geometries is n. The
generated point of interest dataset consists of n2 features
with point geometries which are uniformly placed on n
sloping, evenly spaced, parallel lines. The cardinality of
the point of interest geometries is n2. In Figure 2(b), a
sample of the generated geometries is presented.
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(a) Ontology for Points of Interest (b) Visualization of the geometric part
of the synthetic dataset

Figure 2: Synthetic Dataset

5.2.2. Queries

The synthetic workload generator produces SPARQL
queries corresponding to spatial selection and spatial
joins using the two query templates presented in Ta-
ble 6.

The query template, presented in Table 6(a), used for
producing SPARQL queries corresponding to spatial se-
lections is identical to the query template used in [18, 2].
In this query template, parameter THEMA is one of the
values used when assigning tags to a feature and param-
eter GEOM is the WKT serialization of a rectangle. As in
[2], we define the thematic selectivity of a query as the
fraction of the total features of a dataset that are tagged
with a key equal to THEMA. For example, by altering the
value of THEMA from 1 to 2, the thematic selectivity of
the query is reduced by selecting half the nodes it pre-
viously did. We define the spatial selectivity of a query
as the fraction of the total features for which the topo-
logical relations defined by parameter FUNCTION holds
between each of them and the rectangle defined by pa-
rameter GEOM. By modifying the value of the parame-
ter namespace ns we specify the dataset and the corre-
sponding type of geometric information that is exam-
ined by an instance of the query template.

The query template, presented in Table 6(b), used
for producing SPARQL queries corresponding to spa-
tial joins involves two datasets identified by the val-
ues of the parameter namespaces ns1 and ns2. In this
query template, parameters THEMA1 and THEMA2 con-
trol the thematic selectivity of the query. The value
of parameter FUNCTION defines the topological relation
that must hold between instances of the two datasets
that are involved in an instance of the query tem-
plate. Parameter FUNCTION can be instantiated with ev-
ery function defined in the Geometry Topology Exten-
sion component of GeoSPARQL. In our experiments,
as described in Section 6.3.2, geof:sfIntersects,

geof:sfTouches, geof:sfWithin were used. For ex-
ample, by instantiating the query template (b) with the
values poi for ns1, state for ns2, 1 for THEMA1, 2
for THEMA2 and geof:sfWithin for FUNCTION, we get
a SPARQL query that asks for all generated points of
interest that are inside half of the generated states.

These query templates allow us to generate SPARQL
queries with great diversity regarding their spatial and
thematic selectivity, thus stressing the optimizers of the
geospatial RDF stores that we test and evaluating their
effectiveness in identifying efficient query plans.

5.3. Scalability Workload
Scalability has been an important metric regarding

the evaluation of various kinds of systems, such as mul-
tiprocessor, network, database and distributed systems
[34, 35, 36, 37, 38, 39, 40, 41]. In the context of this pa-
per, the scalability experiment aims at discovering the
limits of the systems under test as the number of triples
in the dataset increase. Each system is tested against
six increasingly bigger, proper subsets of the reference
dataset. For each system-dataset combination we mea-
sure (1) the repository size on disk, (2) the bulk loading
time taking into consideration the limitations of load-
ing methods of each system and (3) the response time
in three queries which represent a spatial selection, a
heavy spatial join with high spatial selectivity and a
lighter spatial join with lower spatial selectivity.

5.3.1. Datasets
Reference Dataset Characteristics. The reference

dataset created has an approximate size of 500 million
triples. The OSM data concern the following list of
countries: Wales, Scotland, Greece, Northern Ireland,
England and Germany. The feature classes selected
are: buildings, landuse, natural, places, points of inter-
est, railways, roads, traffic, transport, water and water-
ways. CLC-2012 is the 2012 version of the CLC dataset
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(a)

SELECT ?s
WHERE {
?s ns:hasGeometry/ns:asWKT ?g.
?s c:hasTag/ns:hasKey "THEMA".
FILTER(FUNCTION(?g, "GEOM"))}

(b)
SELECT ?s1 ?s2
WHERE {
?s1 ns1:hasGeometry/ns1:asWKT ?g1.
?s1 ns1:hasTag/ns1:hasKey "THEMA1".
?s2 ns2:hasGeometry/ns2:asWKT ?g2.
?s2 ns2:hasTag/ns2:hasKey "THEMA2".
FILTER(FUNCTION(?g1, ?g2))}

Table 6: Query templates for generating SPARQL queries corresponding to (a) spatial selections, and (b) spatial joins.

Datasets Country Triples (M) Size (MB)

OSM

Wales 6.56 1,206
Scotland 15.78 2,913

Greece 15.22 2,877
N. Ireland 15.27 3,240

England 104.21 18,965
Germany 326.48 59,002

CLC-2012 39 countries 16.60 11,283
Totals 483.52 99,486

Table 7: Scalability workload: reference dataset sources

presented earlier. Its data covers the 33 European Envi-
ronment Agency member countries and six cooperating
countries.

The reference dataset has been assembled in the fol-
lowing order: OSM (Wales, Scotland, Greece, North-
ern Ireland, England, Germany), CLC-2012. Table 7
presents the order and size of each part of the data com-
prising the reference dataset.

Reference Dataset Requirements. For the scalabil-
ity experiment we needed to design a reference dataset
from which we could create six datasets of increasing
size. This reference dataset had to satisfy the follow-
ing requirements: (1) contain real life data, (2) be re-
alistically big for the given infrastructure, (3) contain
features of multiple types of geometries (points, lines,
polygons), (4) have an as homogeneous feature class
distribution as possible among the six datasets, meaning
(4a) avoid having fewer feature classes in the smaller
datasets so that thematic filtering and by extension spa-
tial filtering would behave in a predictable and unbi-
ased manner and (4b) guarantee that as datasets become
bigger, a similar assortment of feature classes will be
present, but with more instances per class, (5) if pos-
sible, include data with highly complex geometries to
stress even more the store’s geospatial capabilities, (6)
the different data sources must have an overlapping spa-
tial extent in order for spatial comparisons to be mean-
ingful.

Reference Dataset Design and Creation. Require-
ments (1), (2), (3) were met by a subset of the OSM
dataset since it is big enough, with real life data and has
features with all the main types of geometries. Require-

ment (5) was met by the CORINE Land Cover 2012
(CLC-2012) 31 dataset since it contains very detailed ge-
ometries such as burned forest areas. The spatial extent
of the OSM countries selected fall well within the spa-
tial extent of the CLC-2012 dataset, therefore require-
ment (6) was satisfied. In order to meet requirement (4),
we had to also take into account that the OSM dataset
has the same feature classes per country, each data file
describes one feature class per country and that these
files differ greatly in size. Therefore, in order to satisfy
(4b) we had to use the OSM dataset first and the CLC-
2012 second, and for OSM we needed to start from
countries with smaller number of triples. In order to sat-
isfy (4a) we had to sort the files of each country based
on their file size in ascending order before concatenat-
ing them.

Scalability workload characteristics. By selecting
six subsets containing 10K, 100K, 1M, 10M, 100M
and 500M triples of the reference dataset, we cre-
ated the corresponding six scalability datasets which
were used in the scalability benchmark. The ba-
sic characteristics of the datasets (e.g., features and
geometries) are described in Table 8. The prop-
erty <http://data.linkedeodata.eu/ontology#
has_code> (lgo:has_code) was used for thematic filter-
ing in scalability join queries and Table 9 shows the dis-
tribution of this property’s values and the value ranges
used.

31https://land.copernicus.eu/pan-european/
corine-land-cover/clc-2012
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Dataset # of Features # of Points # of Lines # of Polygons
10K 1,135 587 0 900

100K 12,166 6,623 4,239 2,531
1M 118,161 46,781 45,238 29,200

10M 1,038,739 317,865 328,630 427,842
100M 10,259,959 904,677 2,058,386 7,553,440
500M 48,623,878 5,520,767 15,771,932 23,390,220

Table 8: Scalability datasets basic characteristics

lgo:has_code lgo:has_fclass 10K 100K 1M 10M 100M 500M
1001

(used in SC2, SC3) city 1 1 7 14 84 232

5601 railway_station 15 284 284 669 1,194 8,449
5621 bus_stop 4 4,416 4,416 22,337 35,555 503,455
5622 bus_station 36 46 46 98 425 2,647
5641 taxi 7 43 43 217 886 5,798
5661 ferry_terminal 4 18 18 153 583 1,508

5601,5621,5622,5641,5661
(used in SC3) 66 4,807 4,807 23,488 38,643 521,857

(5001-5999) - {5260}
(used in SC2)

transportation
except parking 66 4,875 11,412 264,199 1,978,632 16,151,652

Table 9: Value distribution of lgo:has_code in scalability datasets

5.3.2. Queries

To find an appropriate set of queries we took into con-
sideration multiple factors, such as: (a) the performance
of the systems under test with the smaller workloads
was presented in previous sections, which showed that
only few stores can perform well with spatial joins (see
Section 6), (b) spatial joins are extremely heavy when
it involves polygons, (c) the datasets from 10M triples
onward contain a very high number of polygon geome-
tries, (d) thematic selectivity should be used only if nec-
essary and without breaking the expected load scaling
as datasets got bigger, (e) queries should provide some
narrative and avoid useless Cartesian products between
unrelated geometries.

Factors (a), (b), (c) led to the decision of intro-
ducing thematic selectivity in the spatial join query to
have some stores that could successfully run it. Fac-
tor (e) led to the decision of having a fixed thematic
selectivity of the first part of the join to the feature
class city (lgd:has_code 1001). Factor (d) obliged
us to find an appropriate feature class range for the
thematic selectivity of the second part of the join,
which was the group of feature classes that represent
transportation (lgd:has_code 5001-5999) with the
exception of ’parking’ which had a high number of
instances. Even this thematic selectivity proved high
enough to create difficulties to some RDF stores and
we provided an additional lighter variant of the join
query by limiting the thematic selectivity of the second

part of the join to the following list of feature classes:
railway_station (5601), bus_stop (5621), bus_station
(5622), taxi stands (5641) and ferry_terminals (5661).
These two join queries are SC2 and SC3 respectively
and Table 9 presents a quantitative view of the expected
number of spatial operations for each join query and
each dataset.

SC1 query is a spatial selection that uses a polygon
literal to filter geometries both from OSM and CLC-
2012 datasets. Major cities of countries of the OSM
dataset such as Athens, Thessaloniki, Munich, London,
Edinburgh, Belfast and Cardiff were used as the poly-
gon’s vertices, thus asserting that it covers areas from all
countries of the selected OSM dataset and areas from an
augmented set of countries of the CLC-2012 dataset that
include France, Italy, Austria, Belgium, etc.

The queries used for this test are listed in Table 10.

5.3.3. Systems
For this test we choose the following three sys-

tems to participate: Strabon, GraphDB and RDF4J.
Each of these systems has: (a) adequate support of
GeoSPARQL, (b) is a good representative of a differ-
ent design flavor of RDF store, and (c) is actively sup-
ported by the corresponding team. Strabon is a hy-
brid system using Sesame RDF framework and Post-
greSQL RDBMS extended with PostGIS geospatial ca-
pabilities. RDF4J is an RDF Framework that sup-
ports GeoSPARQL. GraphDB is an RDF Store based
on RDF4J which it extends with specialized libraries for
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Query Description
SC1 Find all geometries that intersect with the given polygon
SC2 Find all transportation-related features (except parkings)

within a city
SC3 Find all bus stops, bus stations, railway stations, taxis and ferry terminals

within a city

Table 10: Queries of the scalability benchmark

its geospatial capabilities, among other things. As men-
tioned previously, our intention was to include the latest
beta version of OpenLink Virtuoso which is a well es-
tablished RDF Store but as explained in Section 4.2 our
preliminary evaluation results showed that we should
wait for a stable release that will cover bigger part of
the features that are evaluated in our benchmark.

6. Benchmark Results

This section presents the results of running Geo-
graphica against six geospatial RDF stores. As men-
tioned earlier, we test the open source systems Strabon
v3.2.9, uSeekM v1.2.1, Parliament v2.7.4, a proprietary
RDF store, called here System X, GraphDB v8.6.1 and
RDF4J v2.4.3.

6.1. Experimental Setup
This section describes the setup of the experiments

used to evaluate the selected triple stores. The machine
that was used to run the benchmark is equipped with
two Intel Xeon E5620 processors with 12MB L3 cache
running at 2.4 GHz, 32 GB of RAM and a RAID-5 disk
array that consists of four disks. Each disk has 32 MB
of cache and its rotational speed is 7200 rpm. The ex-
periments of Geographica have been performed on an
Ubuntu 12.04 installation, however System X is not offi-
cially supported on Ubuntu systems. Alternatively, Sys-
tem X comes with its own Linux distribution that also
provides a dedicated volume manager and a file sys-
tem. Therefore, this distribution was used for System
X experiments. Also, System X supports parallelism in
query execution. Thus, System X was tested in two dif-
ferent modes; a mode where queries are executed in a
single process (indicated as “Ser.” in tables and figures)
and a mode (indicated as “Par.” in tables and figures)
where the parallel query feature of System X is used.
This way, we can assess about how much parallelism
can speed up query evaluation.

Each query in the micro, synthetic and scalability
benchmarks was run three times on cold and warm
caches. For warm caches, each query ran once be-
fore measuring the response time, in order to warm up

the caches. We measured the response time of each
query by measuring the elapsed time from submitting
the query until a complete iteration over the results had
been completed. The response time of each query was
measured and the median of each measurement is re-
ported. The experiments of the macro benchmark have
a slightly different setup, each scenario ran many times
(with different initialization each time, as described in
Section 5.1.3) for one hour without cleaning the caches
and the average time for a complete execution of all
queries of each scenario are reported. The time limit
for real world and synthetic benchmarks was set to one
hour for all queries, while for the scalability benchmark
queries it was set to twenty four hours.

Strabon and uSeekM utilize Postgres enhanced with
PostGIS as a spatially-enabled relational back-end. For
these systems, an instance of Postgres 9.2 with PostGIS
2.0 was used. Because the default settings of Postgres
are rather conservative, it was tuned to make better use
of the system resources. First, the system configuration
file sysctl.conf was edited to increase the amount of
available shared memory (e.g., increasing the kernel pa-
rameter kernel.shmmax) and the maximum number of
files that can be opened (e.g., increasing the file sys-
tem parameter fs.file-max). Second, the Postgres con-
figuration file postgresql.conf was edited. Postgres
was enabled to exploit the increased shared memory.
Also, we would like to avoid resource intensive oper-
ations, like Write-Ahead Logging checkpoints. Thus
by editing parameters like, checkpoint_segments,
and wall_level we force such operations to hap-
pen less frequently and consume less resources than
usual. Finally, some parameters were edited so that the
query evaluation planner produces better query evalua-
tion plans by avoiding genetic query optimization tech-
niques, merging sub-queries into upper queries, and re-
ordering joins. A detailed report of the configuration
parameters used is given on the web site of the bench-
mark.

For every dataset of Geographica, a unique property
is used to connect geometries with their serialization
(e.g. CLC we use the property clc:asWKT), and this
property is defined as a subproperty of the property
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geo:asWKT that is defined by GeoSPARQL. Parliament
is able to identify and index a triple that represents the
serialization of a geometric object only when the prop-
erty geo:asWKT is used. As a result, the RDFS reason-
ing capabilities of Parliament have to be enabled so that
it performs forward chaining during data loading and
indexes the geometry using the spatial index as well.
Strabon, uSeekM, System X, GraphDB and RDF4J do
not perform any reasoning on the input data. Specifi-
cally for RDF4J the Lucene index option had been en-
abled since it was explicitly and unreservedly suggested
as a geospatial optimisation in the official documenta-
tion. However further tests reveiled that the Lucene spa-
tial index increased costs in the repository size and load
time do not provide any substantial benefit in most sce-
narios but instead deteriorate the query response times.
Support questions confirmed that this is probably a per-
formance issue,32,33 threrefore RDF4J was tested in two
different modes; One with the Lucene Sail enabled (in-
dicated as ”Lucene enabled” in tables) and one with
no Lucene Sail. The RDF4J results for both experi-
mentation modes have been included in all tables but
only the non-Lucene indexed results were included in
figures and charts, since they were the best ones. We
also encountered technical issues connecting with the
GraphDB Free runtime to GraphDB repositories which
had the GeoSPARQL plugin enabled, thus we had to
disable the plugin for all tests. In this mode no geospa-
tial data is indexed and no GeoSPARQL predicates are
handled but only queries with GeoSPARQL functions
which are always enabled.

6.2. Real World Workload
6.2.1. Dataset Storage

This section discusses the time required by each sys-
tem to store and index the datasets of the real world
workload, as shown in Table 11. Also, Table 12 reports
the size in MB of the repositories created by each RDF
store.

Strabon uses a storing scheme which is called "per-
predicate" scheme. This scheme creates a relational ta-
ble, in the underlying DBMS, for every unique predicate
in the input data. These tables are called predicate ta-
bles and store pairs of subject and object that are associ-
ated with a specific predicate. This storing scheme may
lead to the creation of many predicate tables and conse-
quently high storing times, if the input data contains a
lot of predicates. Apart from incremental loading meth-
ods, Strabon provides a bulk loader which produces

32https://github.com/eclipse/rdf4j/issues/1281
33https://github.com/eclipse/rdf4j/issues/1160

CSV files that emulate this “per-predicate” scheme and
copies them into Postgres. The Strabon bulk loader
merges in a single relational table, which is called triple
table, triples containing predicates that are rarely used
in the input data. Thus, the number of created predicate
tables is reduced together with the required storing time.
The storing times of Strabon are, still, affected by the
number of predicates used in a dataset. The real world
dataset contains various different datasets that also con-
tain a lot of predicates. So, Strabon needs more time
than uSeekM to store the real world dataset.

uSeekM needs slightly less time than Strabon to store
the real world dataset, because it is based on the native
repository of Sesame which is known to be the most
efficient implementation of Sesame for average sized
datasets. This happens because uSeekM stores geom-
etry literals in PostGIS which is more time consuming
than storing data in the native repository of Sesame. If
the input data does not contain any geometry literals,
then uSeekM is entirely based on the native repository
of Sesame and achieves much better storing times. Be-
cause the Census dataset contains much more geometry
literals than the rest real world datasets and it uses much
less predicates, uSeekM needs more time to store it than
Strabon.

Parliament is slower than uSeekM and Strabon at
storing the real world workload datasets, as it requires
more time to perform forward chaining on the input
dataset in order to index its geometry literals, as de-
scribed in Section 6.1. However this overhead becomes
less important in the case of the Census dataset and
Parliament needs less time to store it than Strabon and
uSeekM.

System X provides two bulk loading methods. The
first, which is based on SQL operations inside its un-
derlying RDBMS, is designed to provide fast loading
but does not support large literals. The second uses a
Java API and supports large literals but needs more time
to store a dataset. For storing the real world workload
the Java bulk loading method was used, because of the
many large literals that some datasets contain. For ex-
ample, the CLC dataset contains the longest literal that
has size 9.3 MBs. Thus, System X needs at least twice
more time than the other RDF stores to store and index
data from the real world workload. The Census dataset
does not contain big literals, so the SQL bulk loader of
System X was used to store it and easily outperformed
Strabon, uSeekM and Parliament.

GraphDB has several load methods of which two
can be considered as bulk loaders since their are de-
signed for offline loading of data sets, directly serial-
izing RDF data into the internal indexes. LoadRDF
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Strabon uSeekM Parliament System X GraphDB RDF4J
Lucene

Workload enabled
Real world 220 214 250 531 91 82 198

Census 1,255 1,675 1,085 895 358 785 3,819
Synthetic 221 406 462 270 118 160 250

Table 11: Storing times (sec.)

Strabon uSeekM Parliament System X GraphDB RDF4J
Lucene

Workload enabled
Real world 1,181 997 1,508 2,591 696 625 1,220

Census 5,221 2,952 4,087 6,598 1,765 2,199 6,235
Synthetic 1,271 1,211 1,763 17,088 513 632 763

Table 12: Repository sizes (MB)

is fast but as load data variety grows a small degrada-
tion occurs because of page splits and tree rebalanc-
ing. PreLoad is ultra fast with no speed degradation,
because of its two-phase load design, which allows it
to first process in memory all RDF data creating mul-
tiple GraphDB repository images and later on sorting
and merging these into the final repository image. Both
tools have the option of enabling parallel multithreaded
operation. From our preliminary tests it was clear that
PreLoad was the fastest tool of the two in all datasets
but the smallest ones. Therefore the tool of choice was
PreLoad tool for all workloads with the parallel option
enabled. In the real world dataset which is the smallest it
recorded the second best time very close to RDF4J’s and
in all other datasets it outperformed most of the other
systems by a factor greater than x2.

RDF4J has a single method for loading data and it
records the best time for the real world dataset and the
second best for the census dataset. With the Lucene in-
dex enabled it performs better than uSeekM, Parliament,
System X and Strabon’s bulk loader. However for the
bigger census dataset the Lucene indexing cost becomes
very high and thus RDF4J needs more than double the
time compared to uSeekM which is the second slowest
system.

Regarding storage space, System X is the most de-
manding RDF store while GraphDB and RDF4J are
again the most efficient ones. System X requires a
lot of storage space mainly for semantic indexes and
also big literals (e.g., for the CLC dataset), that are
stored as BLOB (binary large object) in its internal
RDBMS. RDF4J statement indexes are B-trees with
4-letter composite index keys in various combinations

(S=statement, P=predicate, O=object, C=context). By
default there are two main indices SPOC, POSC and we
enabled the context COSP index only for datasets with
multiple graphs, such as the real world dataset. RDF4J
with the Lucene spatial indexing has high storage re-
quirements for the real world and census datasets which
have the most complex geometries. With the Lucene
indexing disabled, RDF4J needs the least storage space
for the real world dataset and is the second best for the
Census dataset. uSeekM stores most of the data into
the native store of Sesame which does not require a
lot of storage space and only triples with spatial literal
are stored into Postgres. So, it needs less space. For
GraphDB there are two main statement indices POS and
PSO, the context index CPSO which was enabled for
datasets with multiple graphs. The GeoSPARQL plu-
gin was not enabled, which helped allocating the least
amount of space. Strabon and Parliament have average
space requirements. Strabon stores all data in Postgres
while Parliament uses customized binary files to store
triples and indexes and it uses a Berkley DB34 file to
implement the resource dictionary.

6.2.2. Micro Benchmark
The query response times of the micro benchmark

with cold caches are shown in Table 13 and the cor-
responding results with warm caches are shown in Ta-
ble 14. The two tables are very similar in terms of how
the systems are performing hence we do not discuss
these tables separately below.

34http://www.oracle.com/us/products/database/
berkeley-db/overview/index.html
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Type Query
Cold caches (sec.)

Strabon uSeekM Parliament System X GraphDB RDF4J
Parallel Serial Lucene enabled

Non topological
construct
functions

Q1 42.33 38.11 152.71 62.58 293.85 29.68 37.24 37.34
Q2 22.48 21.47 90.23 44.02 204.65 14.55 18.41 18.75
Q3 29.48 27.06 98.56 45.86 213.47 19.42 24.57 24.56
Q4 7.65 3.22 23.16 19.62 309.00 3.20 3.32 3.48
Q5 14.68 4.17 21.63 23.60 236.60 7.45 4.52 4.64
Q6 23.82 19.58 - 39.87 199.25 13.53 - -

Spatial selections

Q7 0.36 1.22 2.42 long string long string 5.33 3.64 3.97
Q8 0.42 0.57 7.69 long string long string 2.04 1.76 1.78
Q9 0.83 1.27 35.03 long string long string 28.28 40.46 40.60
Q10 0.73 1.51 76.85 long string long string 22.24 25.40 25.24
Q11 2.66 2.96 195.87 long string long string 114.29 164.48 164.84
Q12 0.79 0.55 2.39 8.87 6.07 1.02 0.65 0.67
Q13 0.82 0.89 63.14 long string long string 49.67 72.89 72.20
Q14 0.50 2.29 24.34 13.33 11.35 4.13 1.85 1.90
Q15 0.50 0.99 3.44 10.24 10.27 0.93 0.44 0.48
Q16 2.79 5.52 63.20 long string long string 50.61 72.86 72.34
Q17 3.06 1.60 35.89 long string long string 28.31 40.41 40.06

Spatial joins

Q18 4.52 2233.73 2880.20 >1h 14.51 942.89 2894.56 2885.72
Q19 1272.54 >1h >1h >1h >1h >1h >1h >1h
Q20 115.93 >1h >1h >1h 396.29 >1h >1h >1h
Q21 113.26 >1h >1h >1h 409.54 >1h >1h >1h
Q22 26.33 >1h >1h internal error internal error >1h >1h >1h
Q23 26.29 >1h >1h internal error internal error >1h >1h >1h
Q24 26.66 >1h >1h internal error internal error >1h >1h >1h
Q25 342.87 >1h >1h >1h 1,629.45 >1h >1h >1h
Q26 343.30 534.61 2040.00 909.18 >1h 466.86 326.22 324.79
Q27 343.72 >1h >1h internal error >1h >1h >1h >1h

Aggregate
functions

Q28 3.56 - - - - - - -
Q29 258.35 - - - - - - -

Table 13: Response times (cold) - real world workload

Type Query
Warm caches (sec.)

Strabon uSeekM Parliament System X GraphDB RDF4J
Parallel Serial Lucene enabled

Non topological
construct
functions

Q1 41.36 36.25 132.67 57.45 296.96 27.36 36.93 37.20
Q2 21.06 19.35 70.62 35.35 187.71 13.26 17.80 17.96
Q3 27.73 24.13 79.40 38.25 206.70 18.17 23.94 24.11
Q4 7.00 3.08 19.67 19.76 334.93 2.15 3.11 3.12
Q5 13.78 5.00 19.58 17.41 233.53 6.66 4.45 4.47
Q6 21.06 18.35 - 31.58 160.40 12.67 - -

Spatial selections

Q7 0.01 0.02 1.36 long string long string 4.66 3.49 3.46
Q8 0.06 0.05 5.84 long string long string 1.64 1.56 1.55
Q9 0.16 0.05 34.09 long string long string 27.95 41.07 40.77
Q10 0.13 0.10 57.18 long string long string 21.24 24.32 24.14
Q11 2.03 1.29 175.98 long string long string 114.95 164.78 163.44
Q12 0.38 0.03 1.20 4.02 3.99 0.67 0.57 0.57
Q13 0.13 0.04 59.60 long string long string 49.65 72.59 71.92
Q14 0.03 1.63 19.97 4.12 4.03 3.11 1.69 1.68
Q15 0.12 0.30 0.56 3.94 3.97 0.30 0.26 0.26
Q16 2.19 1.96 59.85 long string long string 49.68 72.63 71.97
Q17 2.62 0.86 34.39 long string long string 27.66 40.28 39.93

Spatial joins

Q18 3.98 2504.24 2875.02 >1h 11.53 903.33 2972.27 2969.07
Q19 1284.62 >1h >1h >1h >1h >1h >1h >1h
Q20 105.39 >1h >1h >1h 365.01 >1h >1h >1h
Q21 107.76 >1h >1h >1h 364.32 >1h >1h >1h
Q22 25.20 >1h >1h internal error internal error >1h >1h >1h
Q23 25.01 >1h >1h internal error internal error >1h >1h >1h
Q24 25.37 >1h >1h internal error internal error >1h >1h >1h
Q25 341.04 >1h >1h >1h 1,577.89 >1h >1h >1h
Q26 341.28 534.15 2030.42 955.21 >1h 465.35 325.69 324.04
Q27 342.06 >1h >1h internal error >1h >1h >1h >1h

Aggregate
functions

Q28 2.92 - - - - - - -
Q29 258.00 - - - - - - -

Table 14: Response times (warm) - real world workload
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Non-topological construct functions. First, the results
of evaluating the queries with non-topological functions
are reported. Computing the area of polygons (Query
Q6) was tested only in uSeekM, Strabon, System X
and GraphDB since Parliament and RDF4J do not offer
such functionality. For this class of queries, GraphDB
and RDF4J are the fastest systems followed closely by
uSeekM which does very well in geof:buffer() cal-
culations. uSeekM does not utilize Postgres for evalu-
ating these queries, but it is faster because it uses the
native store of Sesame which is known to be more effi-
cient, for small datasets, than Sesame implementations
on top of an RDBMS, like Strabon. Strabon perfor-
mance is average while Parliament and System X per-
form the worse. Parliament needs three or four times
more time to evaluate the non-topological functions. Fi-
nally, System X, when it runs in serial mode, needs con-
siderably more time to evaluate non-topological queries.
System X stores spatial literals in lexical form instead
of a dedicated binary geometric type. This means that
each time a spatial function is evaluated, the spatial liter-
als must be transformed from lexical to geometry form.
This causes a great overhead, especially for the real-
world workload that use complex geometries. However,
when System X runs in parallel mode this overhead is
distributed among all available processors and System
X evaluates these queries up to sixteen times faster.

We also observe that none of the RDF stores exploits
the warm caches when evaluating non-topological func-
tions. This is because the non-topological functions
used in this set of queries are computationally intensive
(especially when complex geometries are used) and the
time spent in the CPU dominates I/O time.

Spatial selections. In the case of spatial selections,
Strabon and uSeekM have similar response times while
Strabon is the fastest system in most cases. Both sys-
tems choose to start the query evaluation process by
evaluating the spatial part of a query in PostGIS using
the spatial index that is available. uSeekM continues by
evaluating the rest of the query using the native store of
Sesame. This adds a small overhead compared to Stra-
bon which evaluates the whole query in Postgres and
utilizes a unified dictionary encoding scheme for both
thematic and spatial information. GraphDB has an aver-
age performance which is expected since it does not use
its spatial indexing capabilities while RDF4J and Par-
liament are at the low end of the list. RDF4J performs
very well in queries that deal with points and lines, av-
erage with polygon equality test and very low for all
other operations with polygons. Parliament, depending
on the query, it may need even three orders of magni-
tude more time that Strabon and uSeekM to evaluate a

spatial selection. This happens because the query opti-
mizer of Parliament does not take into consideration fil-
ters containing GeoSPARQL functions, so it evaluates
the spatial predicate exhaustively over the results of the
thematic part of the query. System X is optimized for
relatively simple spatial literals, while the tested spatial
selections receive as parameter quite complex polygons
and linestrings. For example, the WKT serialization of
some polygons are even 10 KB long. Thus, System X
returned an error or raised an exception (written as "long
string" in Tables 13, 14) for most of the spatial selection
queries and it responded to only Query Q12 which uses
a small linestring and queries Q14 and Q15 which filter
using points.

Let us now consider queries Q14 and Q15, that are
semantically equivalent, but they are evaluated in dif-
ferent ways. Both ask for points that have a given dis-
tance from a given point. However, Query Q14 creates
the buffer of a given point with radius r and asks for
points which are within this buffer, while Query Q15
asks for points that lie within distance less than r from
the given point. uSeekM and Parliament evaluate both
queries by starting with the thematic part of the query
and then they evaluate exhaustively the spatial opera-
tions without using the spatial index. GraphDB fol-
lows the same path since it does not have a spatial in-
dex. Query Q14 is evaluated slower, than Query 15, by
these systems, because calculating the distance between
two points is much cheaper than computing the buffer
of a point and evaluating the corresponding point-in-
polygon operation. Strabon follows a similar process
for responding to Query Q15. However, for query Q14,
Strabon calculates the buffer of the given polygon, and
uses it to probe the spatial index for discovering points
that lie inside the constructed polygon. This choice is
a good one and the response time of query Q14 is the
same as the one of query Q15. Finally, System X eval-
uates query Q14 with a similar process to Strabon, and
regarding query Q15 it is the only system that uses an
internal distance function that is able to perform index
search instead of evaluating the distance filter over all
intermediate results. So, it achieves similar times for
both queries Q14 and Q15. For these selection queries,
parallelism does not have significant impact on response
times, that are very low independently of whether par-
allelism is being used or not.

Spatial Joins. In the case of spatial joins, uSeekM,
Parliament, GraphDB and RDF4J are able to evaluate
only queries Q18 and Q26 given the time limit of one
hour. Parliament, GraphDB and RDF4J do not take
into account GeoSPARQL extension functions during
the optimization of a query, resulting in query process
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that evaluate separately the graph patterns correspond-
ing to different graphs, compute the Cartesian product
between them, and then apply the spatial predicate to
the result of the Cartesian product. This strategy is very
costly, thus they are not able to respond to most of the
spatial joins within the time limit. uSeekM, also, does
not utilize PostGIS for evaluating spatial joins. Sim-
ilarly to Parliament, it applies the spatial predicate to
the result of the Cartesian product of the graph patterns.
Strabon avoids evaluating Cartesian products by iden-
tifying graph patterns that are related only through the
spatial predicate and pushes the evaluation of the spatial
join in PostGIS, thus resulting in very good response
times. Strabon has the best performance in all queries
with the exception of Q26. In Q26 RDF4J performs
the best mainly because the GAG graph is small and
the thematic selectivity of the query is high. In Q18
the thematic selectivity is high while the spatial selec-
tivity very low resulting in a similar performance with
Parliament’s. System X also uses its native RDBMS to
evaluate spatial joins and, when running in serial mode,
it avoids Cartesian products. But, because of implemen-
tation limitations (e.g., the overhead of transforming
complex geometries from strings into geometry types)
it needs more time than Strabon and it also has some
time outs. System X did not responded to Queries Q22,
Q23, Q24 and Q27 because of an internal exception. It
is interesting that when running in parallel mode, the op-
timizer of System X prefers to ignore the spatial index
and compute a Cartesian product for evaluating most of
the spatial joins. These query execution methods, even
if they run in parallel mode, lead to higher response
times, than the respective methods of serial mode, and
time outs.

Aggregate functions. Finally, spatial aggregations are
tested only in Strabon since it is the only system that
supports such functions. Query Q28 which computes
the minimum bounding box that contains all geome-
tries of the GAG dataset is much faster than Query Q29
which computes the union of the same geometries since
the former operation is much cheaper than the latter one
which is computationally expensive.

A general comment about RDF4J is that in the micro
benchmark the Lucene index did not make any differ-
ence in the query response times.

6.2.3. Macro Benchmark
The results of the macro benchmark are shown in Ta-

ble 15. In this table the average time needed for a com-
plete iteration of all queries of each scenario is reported.

The "Geocoding" scenario includes only thematic
queries that retrieve geographic information. Thus,

uSeekM evaluates the whole queries in the native
Sesame store achieving very fast response times.
RDF4J performs second best and GraphDB which is
also based on RDF4J follows close by. System X also
has very fast response times both in serial and parallel
mode and it is the fourth fastest RDF store for this sce-
nario. RDF4J with the Lucene index performs average
because it is not used in these queries. Strabon uses
its underlying RDBMS and has slower response times,
while Parliament is the slowest RDF store in this sce-
nario.

The "Reverse Geocoding" scenario has two queries
which use the function distance to sort retrieved ge-
ometries and select the first result that is closest to a
given point. GraphDB performs the best in this scenario
and is followed closely by RDF4J, uSeekM and RDF4J
with Lucene. Parliament also has a fast response in this
scenario, but it is 3 to 4 times slower than the systems of
the first group. On the other hand, System X and Stra-
bon, which are based on an internal RDBMS, need at
least an order of magnitude more time to respond to a
whole iteration of this scenario.

In order to respond to these nearest-neighbor queries
of this scenario, all RDF stores compute the distance
of every retrieved geometry from the given point, then
they sort these values in ascending order and select the
first geometry that corresponds to the minimum dis-
tance. Strabon, especially, inserts every value computed
by the function distance into the respective dictionary
encoding table. As more nearest-neighbor queries are
posed, this dictionary table is getting bigger and bigger
and the performance of Strabon is deteriorating. So, its
average iteration time is very high in this scenario. On
the contrary, the other systems discard the intermediate
distance values, so they achieve faster response times.

The "Map Search and Browsing" scenario has one
thematic query and two spatial selection queries. As de-
scribed in Section 6.2.2, uSeekM and Strabon are effi-
cient in evaluating spatial selections and they have good
performance in this scenario as well, followed closely
by GraphDB. RDF4J performance in both modes is av-
erage while System X (in serial mode) performs the
worst in this scenario because of Query MSB3, which
asks for complex geometries (linestrings) and gives a
lot of results. System X needs, on average, 120 seconds
to respond to Query MSB3. In parallel mode the same
query needs only around 14 seconds, so the average per-
formance of System X improves. Strabon and Parlia-
ment spend most of the time in evaluating this query,
as well. On the contrary, uSeekM spends more time in
evaluating query MSB1, because it generates the Carte-
sian product between two triples. But, it has very fast
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response times so it is still the faster system in this sce-
nario.

The "Rapid Mapping for Fire Monitoring" scenario
is the most demanding one. It comprises three spa-
tial selections queries, but also two complex queries
which include spatial joins and construct new geome-
tries (boundary and intersection). Only Strabon could
serve this scenario since all other stores exceeded the
time limit of one hour during evaluating queries of this
scenario. Parliament, uSeekM, GraphDB and RDF4J
timed out while evaluating Query RM6, and System X
while evaluating queries RM4 and RM6. These two
queries are also the most time consuming for Strabon
as well because they produce many results.

Finally, the "Computing Statistics of Geospatial
Datasets" scenario tests computing aggregations over
simple spatial selections or spatial joins of geospatial
datasets. In this scenario uSeekM is the fastest system
that needs, on average, less than a second to respond to
all three queries of this scenario. The second fastest sys-
tem is Strabon that needs about 5 seconds to respond to
a full iteration of this scenario. GraphDB, RDF4J and
System X have an average performance. Parliament is
the slowest store which spends the most of the time in
evaluating Query CS1, while for the rest of the systems
Query CS2 which contains a spatial join is the most time
consuming. Finally, System X has similar performance
both in parallel and serial mode.

6.3. Synthetic Workload
Let us now discuss experiments that were run using a

synthetic workload that was produced by the generator
presented in Section 5. A dataset was generated by set-
ting n = 512 and k = 9, where n is the number used for
defining the cardinalities of the generated geometries,
and k is the number used for defining the cardinalities
of the generated tag values. This dataset produced us-
ing the synthetic generator contains 262, 144 land own-
ership instances, 28, 900 states, 512 roads and 262, 144
points of interest. All features are tagged with key 1, ev-
ery other feature with key 2, etc. up to key 512. The re-
sulting dataset consists of 3,880,224 triples and its size
is 745 MB.

6.3.1. Dataset Storage
Table 11 presents the time required by each system

to store and index the synthetic dataset and Table 12
presents the required storage space.

The synthetic dataset has fewer predicates and
more geometries than the real world one. GraphDB
is the fastest system because of the parallel multi-
threaded operation of the PreLoad tool and because

the GeoSPARQL plugin was disabled. RDF4J per-
forms very well and is placed second. With the ad-
ditional cost of Lucene spatial indexing, it still per-
forms close to Strabon’s time and that is because the
synthetic dataset is relatively small. uSeekM requires
more time than Strabon for storing the dataset, since
it stores it in a Sesame native store and then it stores
triples with geometric information in PostGIS as well.
This overhead is significant compared to the total time
required for storing the dataset, but leads to better re-
sponse times of uSeekM in case of evaluating a query
with low spatial selectivity, as discussed in Section 6.3.2
(see Figures 3(a)- 3(h)). As already explained in Sec-
tion 6.2.1, Parliament needs more time to store the syn-
thetic dataset as well as the real world dataset because it
performs forward chaining on the input data. The syn-
thetic dataset does not contain any huge literals so we
were able to use the SQL bulk loader of System X to
store this data. As in the case of the Census dataset,
the SQL bulk loader achieves much better storare times
than the Java API used to store the real world workload
dataset.

Regarding storage space, GraphDB requires the least
space because it uses the two basic indexes POS and
PSO and the GeoSPARQL plugin was disabled. RDF4J
is a little more demanding because it uses by default the
more complex SPOC, POSC indexes. Also, the SQL
bulk loader of System X and the bulk loader of Stra-
bon, which also utilizes SQL operations to load data,
achieve similar fast storage. Strabon, uSeekM and Par-
liament increase their storage demands to cater for the
increase in number of facts and geometries. System X
has the highest storage demands because of the seman-
tic indexes and big literals.

6.3.2. Queries
We used the query template presented in Table 6(a)

in order to produce SPARQL queries corresponding to
spatial selections that ask for land ownerships which in-
tersect a given rectangle, and points of interest that are
within a given rectangle. The given rectangle is gen-
erated in such a way that the spatial predicate of the
query holds for 0.01%, 10%, 25%, 50%, 75% of all
the features of the respective dataset. In addition, the
query template was instantiated using the extreme val-
ues 1 and 512 of the parameter THEMA for selecting ei-
ther all or approximately 0.02% of the total features
of a dataset. The response time of each system for re-
sponding to this query template are presented in Fig-
ures 3(a)-3(h).

We implemented the query template presented in Ta-
ble 6(b) in order to produce SPARQL queries corre-
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Scenario Strabon uSeekM Parliament SystemX GraphDB RDF4J
Par. Ser. Lucene enabled

Geocoding 29.40 0.05 63.26 3.04 7.71 1.51 1.37 10.25
Reverse Geocoding 65 0.77 2.6 15.07 15.16 0.60 0.73 0.85
Map Search and
Browsing 0.9 0.6 22.2 22.14 124.49 1.03 4.09 4.80

Rapid Mapping for
Fire Monitoring 207.4 - - - - - - -

Computing Statis-
tics of Geospatial
Datasets

4.55 0.4 63.49 22.68 19.40 17.04 20.43 21.99

Table 15: Average iteration times - macro scenarios (sec.)

sponding to spatial joins that ask for land ownerships
that intersect a state, touching states and points of inter-
est that are located inside a state. We also implemented
this query template using all combinations of the ex-
treme values 1 and 512 for the parameters THEMA1 and
THEMA2. The response time of each system executing
template are presented in Figures 4(a)-4(c).

Spatial selections. By examining Figures 3(a)- 3(h),
we observe that Strabon has very good performance
overall in spatial selections. uSeekM has low response
times when few features satisfy the spatial predicate but
when more features satisfy the spatial predicate the re-
sponse time increases. Parliament has very high re-
sponse times in most cases regardless of the spatial or
thematic selectivity of the queries. In most cases, Sys-
tem X has average performance when running in par-
allel mode and it is the second fastest RDF store after
Strabon. When running in serial mode System X has
worse performance. GraphDB has the second best per-
formance after Strabon and scores the best times in the
low thematic selectivity queries. It has low sensitivity
with spatial selectivity of the queries. These two fea-
tures are also shared by RDF4J which scores very high
in the "512 tag" group of queries and is insensitive
to query spatial selectivity changes, but in the "1 tag"
group of queries scores low, being better than Parlia-
ment and serial mode System X.

Strabon uses Postgres (extended with PostGIS) to ex-
ecute a SPARQL query. PostGIS has been enhanced
with spatial selectivity estimation capabilities, from ver-
sions 2.x onwards. As a result, when a query selects
only few geometries, Postgres always starts with execu-
tion of the spatial predicate using the spatial index, thus
resulting in few intermediate results and good response
times. While the spatial selectivity increases and more
geometries satisfy the spatial predicate, the optimizer
of Postgres chooses different query execution methods.
For example, when the value of the parameter THEMA
is 1 (Figures 3(a), 3(c), 3(e), 3(g)) and the value of the

parameter GEOM is such that all geometries satisfy the
spatial predicate, Postgres ignores the spatial index and
performs a sequential scan on the table storing the ge-
ometries for evaluating the spatial predicate. Similarly,
when the value of the parameter THEMA is 512 (Figures
3(b), 3(d), 3(f), 3(h)) and the value of the parameter
GEOM is such that all geometries satisfy the spatial pred-
icate, Postgres starts with the execution of the thematic
selection that produces few intermediate results since
only 0.02% of the features satisfy the thematic predi-
cate, resulting in good query response times.

Regarding uSeekM, its performance is not affected by
the thematic selectivity of the query. For spatial selec-
tions, uSeekM always starts with the spatial predicate in
PostGIS and then continues the query execution in the
native Sesame store. As a result, regardless of the the-
matic selectivity, the response time of uSeekM is low
when few features satisfy the spatial predicate and in-
creases when the number of features with geometries
that satisfy the given spatial predicate increases.

Regarding Parliament, its performance is not affected
by the thematic or by the spatial selectivity of a query.
Parliament always starts by executing the non-spatial
part of a query and then executes the thematic filter and
the spatial predicate exhaustively on the intermediate
results. Thus, the thematic and spatial selectivity of a
query do not affect its response time.

System X, like Strabon, is capable of estimating the
selectivity of both the spatial and the thematic part of a
query and to select correct query execution paths. Es-
pecially when it runs in parallel mode, System X has
fast response times when it starts by executing thematic
filters (Figures 3(b), 3(d), 3(f), 3(h)) and outperforms
uSeekM and Parliament, which select wrong query ex-
ecution paths. However, its response times get higher
when it starts with executing spatial predicates (Fig-
ures 3(a), 3(c), 3(e), 3(g)), even if this choice is cor-
rect, and results get mixed. This means that System X,
which stores geometries in lexical form and uses an in-
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Figure 3: Response times - synthetic workload (selections)

ternal function to execute spatial predicates, is slower in
executing spatial predicates that uSeekM and Strabon,
which utilize PostGIS. Also, the performance of Sys-
tem X in parallel mode compared to its performance in
serial mode improves more when it starts by executing

the thematic part of a query than when it starts with the
spatial part. This indicates that filtering operations on
actual lexical values are better parallelized by System X
than filtering on spatial values.

In [2], similar experiments have been performed for
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evaluating the performance of Strabon in spatial selec-
tion queries where spatial and thematic selectivity of
queries can be controlled. In these experiments only
point geometries were used and an older version of Stra-
bon was tested. This older version of Strabon utilized a
PostGIS version prior to 2.x which lacks the capabil-
ity to estimate the spatial selectivity of a query. Ex-
perimental results described in [2] showed that the ab-
sence of dynamic estimation of spatial selectivity can
lead to wrong query execution paths and increase the
response time of a system. This happens because the
system is not able to correctly select the part (thematic
or spatial) of the query that produces less intermediate
results. The importance of dynamic estimation of spa-
tial selectivity becomes more obvious in experiments of
Geographica where Strabon and, in many cases, System
X outperform uSeekM because they are able to select
correct query execution paths. For example, in cases
where the thematic selectivity of a query is low while
the spatial selectivity increases (Figures 3(b), 3(d), 3(f),
3(h)) both Strabon and System X begin the query exe-
cution with the thematic part of the query and achieve
lower response times than uSeekM that always executes
first the spatial part of a query.

Spatial Joins. In the case of spatial joins (Fig-
ures 4(a)- 4(c)), Strabon is the fastest system in most
cases and the only one that responded to every query
within the time limit of one hour. uSeekM, System
X, GraphDB and RDF4J executed most of the spatial
joins, given the one hour time limit, but they needed
more time than Strabon. Finally, Parliament responded,
within the time limit, the spatial joins only when param-
eters THEMA1 and THEMA2 are equal to 512.

Strabon relies on the optimizer of Postgres which
takes into account the thematic selectivity of the queries
and selects good query paths, thus Strabon is the only
system that is able to respond to the spatial joins given
the one hour timeout when the parameters THEMA1 and
THEMA2 are equal to 1.

System X, running in parallel mode, did not re-
spond to any join, with parameters THEMA1 and THEMA2
equal to 1, within the time limit of one hour. While,
running in serial mode an internal exception occurred
when evaluating functions geof:sfIntersects (Fig-
ure 4(a)) and geof:sfWithin (Figure 4(c)). Also,
System X (running in serial mode) needed more than
one hour to evaluate the joins with parameters THEMA1
equal to 512 and THEMA2 equal to 1 using functions
geof:sfIntersects and geof:Within. Regarding
spatial joins, System X relied on the estimated cardi-
nality of the first variable of the spatial predicate to de-
cide whether to use the spatial index or not. System X

chooses to use the spatial index when the first spatial
variable has high cardinality (THEMA1=1), regardless of
the second spatial variable (consequently the parame-
ter THEMA1). Similarly, when the cardinality of the first
spatial variable is low (THEMA1=512) System X ignores
the spatial index, it computes the Cartesian product of
the given triple patterns and evaluates the spatial filter
over the intermediate results. This strategy is not always
effective because it ignores the cardinality of the second
spatial variable in planning the evaluation of a query.
For example, in Figures 4(a) and 4(c) evaluating the spa-
tial joins with parameters THEMA1=1 and THEMA2=512
needs the same or less time than evaluating the joins
with parameters THEMA1=512 and THEMA2=512 even
though the latter are more selective.

Finally, uSeekM, GraphDB, RDF4J and Parliament
produce the Cartesian product between the graph pat-
terns that are joined through the spatial predicate, and
evaluate the spatial predicate afterwards. This strategy
is very costly, thus Parliament is not able to respond to
most spatial joins given the one hour timeout and the
other systems are more than two orders of magnitude
slower than Strabon. However, in Figure 4(b) 512-512
it is shown that uSeekM, GraphDB and RDF4J outper-
form Strabon. Strabon stores all geometries in a single
table, so the evaluation of the spatial predicate Touches
on this table returns not only the geometries of states
that touch each other, but the touching geometries of
land ownerships as well. The touching geometries of
land ownerships are discarded later on, but this over-
head proves to be more costly than producing a Carte-
sian product and evaluating the spatial predicate after-
wards.

6.4. Scalability Workload

6.4.1. Dataset Storage
This section discusses the time required by each sys-

tem to store and index the datasets of the scalability
workload, as shown in Table 16. Also, Table 17 re-
ports the size of the repositories created by each RDF
store. We also reveal weak spots of each process and
the workarounds employed to overcome them.

In order to load the data with Strabon we tried both
the default loader and the bulk loader and used the most
appropriate one. The default Sesame based loader is ef-
ficient for datasets of up to 100K triples but in the 1M
triples the indexing costs of the PostgreSQL+PostGIS
start becoming very high resulting in a time similar
to the slowest response by RDF4J with Lucene index-
ing enabled and x7 slower than the fastest response by
RDF4J. Strabon’s bulk loader, which is a tailor-made
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Figure 4: Response times - synthetic workload (joins)

System 10K triples 100K triples 1M triples 10M triples 100M triples 500M triples
Single chunk Single chunk Single chunk Single chunk Single chunk 10M chunk Single chunk 10M chunk

Strabon Default loader 7,00 sec 19,00 sec 292,00 sec - - - - -
Bulk Loader - - 73,54 sec 943,74 sec 1.993,00 sec - 25.650,00 sec* -

GraphDB 47,10 sec 4,15 sec 64,59 sec 157,95 sec 1.515,64 sec - 7.173,00 sec -

RDF4J 1.37 sec 5.01 sec 43.85 sec 363.64 sec X 4,252.30 sec X 169,063.759 sec
Lucene enabled 4,73 sec 23,61 sec 298,91 sec 2.212,38 sec X 19.201,34 sec X 357.970,89 sec

Table 16: Storing times (sec.)

System 10K triples 100K triples 1M triples 10M triples 100M triples 500M triples
Single chunk Single chunk Single chunk Single chunk Single chunk 10M chunk Single chunk 10M chunk

Strabon 19 MB 51 MB 367 MB 3.1 GB 28 GB - 134 GB -
GraphDB 16 MB 25 MB 132 MB 1.11 GB 10.9 GB - 54 GB -

RDF4J 3.1 MB 14 MB 135 MB 1.23 GB X 11.82 GB X 59.10 GB
Lucene enabled 4.6 MB 35 MB 378 MB 3.2 GB X 25 GB X 145 GB

Table 17: Repository Sizes (MB, GB)

tool, has two issues that we had to take into consid-
eration. First, it has an initial overhead which is only
worth when loading files with more than one million
triples. That is why we choose not to use it for the
two smaller datasets. The sweet spot for switching be-
tween the two loaders is somewhere around 1M triples.
Second, it requires a memory size near the size of the
dataset to load. The reason for this problem is that the
RDF library used needs to parse the entire input file
in one step before storing it persistently. This situa-
tion did not allow the bulk loader to import the 500M
triple dataset and obliged us to use a server with 128

GB RAM in order to perform the first stage of the im-
port which creates a set of CSV files. These files were
afterwards transferred back to the reference server and
we continued with the second step which was import-
ing the CSV files into PostGIS database. The time
25.650, 00sec = 14.000sec + 11.250sec of the two steps
therefore is “dirty” and reported for completeness pur-
poses only.

The default loader of RDF4J could not support files
with more than approximately 15M-triples, therefore
the 100M and 500M triples datasets were split into 10M
triples chunks and in these cases the total amount of
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time needed to diggest all chucks is reported. It scores
acceptable times up to the 10M triples dataset and from
there on its performance rapidly deteriorates. With
Lucene spatial indexing the performance is extremely
high for datasets over 1M triple.

The two phase import design of GraphDB’s bulk
loader, the use of parallel thread execution and the very
good choice of default values for its highly paramet-
ric configuration allowed it to load all datasets, but the
smallest one, in a fraction of the time compared to all
other systems.

With respect to the resulting repository sizes, RDF4J
is the most efficient system for the two smallest datasets
and GraphDB is marginally better than RDF4J in the
larger ones. The small improvement over RDF4J is that
GraphDB uses POS and PSO indexes for statements and
the literal index while RDF4J has SPOC, POSC. Since
the GeoSPARQL plugin returned ambiguous results35,
it was disabled and this contributed greatly to the ef-
ficient performance times achieved, as the repositories
are smaller. Enabling the GeoSPARQL plugin increases
the repository size by an average of 40%. RDF4J with
Lucene enabled has the same storage requirements as
Strabon which more than double than GraphDB.

From Tables 16 and 17 it is clear that GraphDB is the
most scalable system in terms of the initial loading time
of datasets and the final repository size.

6.4.2. Queries
The results of the scalability benchmark are shown

in Figure 5 where the response time of each query is
reported for both cold and warm caches. RDF4J with
Lucene spatial indexing was slower and only RDF4J
standard mode results are included. Strabon is clearly
the fastest system in all dataset, query and cache com-
binations but the smallest dataset with cold caches
where RDF4J is the fastest. RDF4J is also faster than
GraphDB in the most demanding SC2 spatial join query
where high thematic selectivity results in full table scan
to produce the result. The same holds to a lesser de-
gree for queries SC1 and SC3 but for the two smallest
datasets. GraphDB on the other hand is much faster than
RDF4J in the moderate SC3 spatial join query which
has a smaller thematic selectivity and is clear that fil-
ters results on the thematic part before proceeding with
the evaluation of the spatial part. For the 500M triples
dataset, GraphDB did not complete query SC2 in the 24
hour limit while RDF4J failed to complete queries SC2
and SC3.

35https://jira.ontotext.com/browse/GRAP-143

7. Evaluating the Performance of RDF Stores with
Limited Geospatial Capabilities

Apart from the RDF stores that we have already
tested, there are also some RDF stores that provide
geospatial capabilities only for points. Indexing and
evaluating queries only for simple geometry types
(points) allows to use different index and query eval-
uation methods than that for more complex geometry
types, like polygons and lines. For example, points can
be indexed using two B-trees or a point quadtree, while
polygons are usually indexed using an R-tree. In or-
der to find out if there is a performance trade-off be-
tween these two approaches , this section evaluates the
performance of two RDF stores that provide limited
geospatial capabilities (support only points) and com-
pare them with the geospatial RDF stores which are
tested in the previous sections. For this purpose Vir-
tuoso v7.1 and a proprietary RDF store (which we will
call System Y) are used. Virtuoso and System Y sup-
port only point geometries. Thus, for the real world and
synthetic workloads of Geographica 2, the parts of the
datasets that contains only point geometries are kept and
only the queries which handle point geometries are re-
run in the geospatial RDF stores Strabon, uSeekM, Par-
liament, System X, GraphDB, RDF4J and the limited-
functionality systems Virtuoso and System Y.

7.1. Real World Workload
The real world workload used in this case consists

of only the corresponding datasets from DBpedia and
GeoNames. Because Virtuoso and System Y do not
provide any non-topological function only spatial se-
lections and spatial joins were tested. Also, the macro
benchmark is not used in this section, since all scenarios
use more complex geometry types than points.

7.1.1. Dataset Storage
The storage times for the real world workload are pre-

sented in Table 18 and Table 19 presents the storage
space required in each case. For this subset of Geo-
graphica 2, we stored only the corresponding datasets
of DBpedia and GeoNames. In this table we observe
that Virtuoso and System Y need considerably less
time to store and index the real datasets than the other
systems. They provide dedicated bulk loaders which
achieve better storage times in comparison to storage
times of the full geospatial RDF stores which either
use Sesame, RDF4J and Jena Java API for loading data
(e.g., uSeekM, GraphDB, Parliament) or they provide
bulk loaders that perform complex processing of the in-
put data (e.g., Strabon, System X).
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Figure 5: Response times - Scalability workload

Workload Strabon uSeekM Parliament System X GraphDB RDF4J Virtuoso System Y
Real world 65 45 36 68 62 26 9 8
Synthetic 496 771 874 418 116 306 63 31

Table 18: Storing times (sec.). Real world: GeoNames,
DBpedia. Synthetic: PointsOfInterest

Workload Strabon uSeekM Parliament System X GraphDB RDF4J Virtuoso System Y
Real world 338 124 238 534 220 122 213 657
Synthetic 2201 1871 2864 2865 733 1031 703 3084

Table 19: Repository sizes (MB). Real world: GeoN-
ames, DBpedia. Synthetic: PointsOfInterest

The space needs of the two RDF stores with point
geometry functionality differ significantly. System Y
allocates a large amount of space, even more than the
full geospatial RDF stores. Virtuoso, on the other hand,
needs little space which, however, is almost twice as
much as RDF4J and uSeekM.

7.1.2. Queries
Given the spatial selections that are supported by Vir-

tuoso and System Y, queries Q14 and Q15 (spatial selec-
tions) have been tested. As described in Section 6.2.2,
these queries ask for points that lie within a given dis-
tance from a given point, but each query uses a differ-
ent function. Also Query Q18 (spatial join) was tested
which asks for pairs of points of the datasets GeoN-
ames and DBpedia that are equal. Virtuoso does not

offer functions to create a buffer. Instead it provides the
functions bif:st_within, bif:st_intersects, and
bif:st_contains which receive a third argument that
is a tolerance value for matching in units of linear dis-
tance. In order to emulate Query Q15 in Virtuoso, in-
stead of creating a buffer of the given point with radius
r and asking for points inside the buffer, we can ask for
points inside the given point with tolerance r.

The response times of these queries are reported in
Figure 6. Query Q14 has a complex filter clause (point
inside a point buffer) but if the point buffer is computed
the spatial index can be used to evaluate the query. Thus,
the majority of RDF stores that utilize the spatial index
to evaluate this query (Virtuoso, System Y, and Strabon)
respond to it faster than uSeekM, Parliament, System X
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Figure 6: Response times, real world workload

serial, GraphDB and RDF4J which do not use an index.
System X parallel did not complete the evaluation of
Q14. Especially Virtuoso, which is not burdened with
the cost of evaluating a topological relation over com-
plex geometries (like a buffer of a point), achieves the
best response time. Query Q15 does not favor the use
of spatial index but its filter clause (distance between
points) is executed faster than the filter clause of query
Q14 (point inside point buffer). Thus, uSeekM, Parlia-
ment, GraphDB and RDF4J need less time to respond to
this query than Query Q15. uSeekM needs the least time
of all systems. Virtuoso and System Y need slightly
more time to respond to query Q15 than Q14, because
they do not use their spatial indexes. In the case of spa-
tial join (query Q18) Virtuoso has the fastest response
time while Strabon comes second. System X (in parallel
mode) needs more time than the one hour limit to eval-
uate this join, as well as in the full micro-benchmark.

7.2. Synthetic Workload
The synthetic workload used the generator, which is

described in Section 5.2.1, to generate a dataset and only
the generated points of interest were stored. Because
only points were used we chose to set the generator pa-
rameters n = 1024 and k = 10 and generate a bigger
dataset that contains about seven million triples.

7.2.1. Dataset Storage
The corresponding storage times and allocated stor-

age space are shown in Tables 18 and 19. As well
as for the real world workload, Virtuoso and System
Y need less time to store the dataset of the synthetic
workload than the full geospatial RDF stores. For the
synthetic dataset which is bigger than the real world
dataset the low requirements in storage space of Virtu-
oso, GraphDB and RDF4J are more emphasized. While
Virtuoso is slightly more compact than GraphDB, both
stores need about two times less space than uSeekM and
three times less space than the other RDF stores. On

SELECT ?s

WHERE {
?s ns:hasGeometry/ns:asWKT ?g.

?s c:hasTag/ns:hasKey "THEMA".

FILTER(FUNCTION(?g,

bif:st point(45, 45), "TOL"))}

Table 20: Query template for synthetic queries of Virtuoso

the other hand, System Y has higher space requirements
than the full geospatial RDF stores.

7.2.2. Queries
For this subset of Geographica 2 only spatial selec-

tions using topological relation geof:sfWithin were
executed. Since functions in Virtuoso cannot receive a
rectangle as argument, the respective queries that were
run by Virtuoso are produced by instantiating the tem-
plate in Table 20. The parameter TOL is the tolerance
value that will be used by Virtuoso for evaluating the
topological relation defined by parameter FUNCTION. So
a circle is considered by bif:st_within and the radius
of the circle (defined by the parameter TOL) is instanti-
ated to achieve each time the proper spatial selectivity.

The response times for these queries are presented
in Figure 7. For high thematic selectivity tag=1 Vir-
tuoso is the fastest system while Strabon comes sec-
ond. For low thematic selectivity tag=1024 GraphDB
and Strabon are at the top. Both System Y and Vir-
tuoso executed all queries by starting with the spatial
part of the query and then continuing with the thematic
part and this is why their performance is affected more
by the spatial selectivity of the query than by the the-
matic. For example, when the value of the parame-
ter THEMA is 1 (Figures 7(a), 7(c)) Virtuoso needs
the shortest time to evaluate the spatial selections. But
when the value of the parameter THEMA is 1024 (Fig-
ures 7(b), 7(d)) Virtuoso does not exploit the fact that
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few points satisfy the thematic part of the query and its
response time increases while the spatial selectivity is
increased and more points satisfy the spatial predicate.
Thus, GraphDB and Strabon, which changes its execu-
tion path if the spatial selectivity is increased, respond
to these queries faster.

7.3. Summary

This section compared the performance of RDF sys-
tems that implement GeoSPARQL with general pur-
pose RDF systems which provide limited spatial func-
tionality. Regarding data storage, Virtuoso and Sys-
tem Y provide the best bulk loading capabilities while
Virtuoso and GraphDB, have very low space require-
ments. Regarding query evaluation Virtuoso, Strabon
and GraphDB have the best performance. Finally, the
query optimizers of Virtuoso and System Y do not take
into account the selectivity of a spatial predicate. How-
ever, this does not lead to bad performance because of
their fast search mechanisms, even if the thematic selec-
tivity of a query is greater than the spatial.

8. Summary and Future Work

In this section, we summarize the work presented in
this article, and discuss the limitations and future exten-
sions of our work.

8.1. Summary

This article presents a benchmark for evaluating
geospatial RDF stores. First, it presents a func-
tional comparison of well known geospatial RDF stores.
Then, it compares their performance according to three
workloads: the real world, the synthetic and the scala-
bility workload.

The real world workload is based on real data and is
separated into two parts. The micro part tests geospatial
operations in isolation and aims at stressing the spatial
module of RDF stores. A conclusion that can be drawn
from this part is that integration of a spatial module in
most of the geospatial RDF stores is not mature. Most
of the poor performance issues observed were either be-
cause the spatial index was not properly utilized or due
to inefficiencies of the spatial relation evaluation engine
(e.g., not being optimized for complex geometries).

The macro part of the real world workload eval-
uates the performance of RDF stores in simulations
of real application scenarios. Various application sce-
narios were specified that range from simple scenar-
ios (e.g., "Geocoding", "Reverse Geocoding", "Map
Search and Browsing") to more complicated scenarios

that serve domain expert needs (e.g., "Rapid Mapping
for Fire Monitoring", "Computing Statistics of Geospa-
tial Datasets"). uSeekM has the best performance for
queries that consist of simple spatial operations (e.g.,
spatial selections), like "Geocoding", "Reverse Geocod-
ing", "Map Search and Browsing", and "Computing
Statistics" of Geospatial Datasets. For more complex
applications that include both spatial joins or spatial ag-
gregations, like "Rapid Mapping for Fire Monitoring"
Strabon is the only RDF store that performed well. Sys-
tem X and Parliament performed well only for some
scenarios, e.g. "Geocoding" and "Reverse Geocoding"
respectively, but they had always worse performance
than uSeekM or Strabon. So, every scenario can be well
served by at least one RDF store. This means that there
are already implementations capable of being used in
real applications and bringing the merits of linked data
in the geospatial domain.

The synthetic workload uses synthetic data of arbi-
trary size and queries with various thematic and spa-
tial selectivities and tests whether spatial query process-
ing is deeply integrated in their query engines. The re-
sults of this workload highlight the importance of spa-
tial statistics and using them to select appropriate query
execution paths. RDF stores that do so manage to have
a good performance for all combinations of spatial and
thematic selectivity. While, other RDF stores that do not
take into consideration the spatial selectivity of a query
and stick to only one type of execution pat (e.g., always
execute the spatial part of a query and then the thematic
part) do not always achieve good performance.

The scalability workload is based on a set of in-
creasingly larger subsets of the union of two real world
datasets, OSM and CORINE 2012. Three systems par-
ticipated in this test and they were selected based on be-
ing actively maintained and being representative of each
one of the different architectures of the RDF stores iden-
tified, namely RDF frameworks (RDF4J), NoSQL RDF
stores (GraphDB) and hybrid RDF stores with RDBMS
as a backend (Strabon). One spatial selection query and
two spatial join queries, a demanding and a moderate
one, were used to stress the systems against datasets up
to 500M triples. The infrastructure used was a small
system by today’s standards and helped each system
to show its limits early on. Strabon which belongs to
the hybrid architecture proved to be the most efficient
one in answering all queries but faced problems with its
bulk loader over 100M triples. GraphDB achieved ex-
ceptional performance in bulk loading and storage size
but, as RDF4J, was not able to answer the three queries
fast enough. Programmatic operation for GraphDB’s
stores with the GeoSPARQL plugin enabled was not
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Figure 7: Response times - synthetic workload (selections)

possible because of runtime errors, so a question re-
mains about how well GraphDB would have performed
in queries using spatial predicates. Although RDF4J
was not able to manage more than 100M-triples datasets
with geospatial data, it proved that it can be consid-
ered as the basis for building more complete horizon-
tally scalable geospatial RDF stores which will provide
a better spatial indexing mechanism both performance
and storage wise.

Finally, a comparison between RDF stores that pro-
vide full geospatial functionality and RDF stores with
limited geospatial capabilities was performed, trying
to find out whether ad-hoc implementations support-
ing only points would perform better than full geospa-
tial implementations. RDF stores with limited geospa-
tial capabilities performed very well, especially at bulk
loading and at spatial selections. However, the perfor-
mance difference with some full geospatial RDF stores
is not as much as expected. Especially in cases when the
spatial part of a query selects a lot of spatial features,
some full geospatial RDF stores become faster than the
RDF stores that support only points.

8.2. Limitations and Future work
The real world and synthetic workloads used in Ge-

ographica are relatively small and they covered only
a limited geographic extent, such as Greece or New
York. However, as the results of the experimental eval-
uation showed, they were enough to stress all systems

that were evaluated. By adding the scalability work-
load we raised considerably the size of the datasets to
500M triples with 100GB of geospatial data that cov-
ered many European countries and contained highly
complex geometries. By replacing OWLIM with its
successor GraphDB and introducing the geospatially
enabled RDF4J successor of Sesame RDF store we in-
cluded the newest developments in systems of this area.

In future work, we plan to include in the bench-
mark the newest Virtuoso version which offers some
GeoSPARQL features; we have not been able to do it
in this version due to problems with the current imple-
mentation as we discussed in Section 4.2.

Given that there are today institutions such as carto-
graphic agencies (e.g., Kadaster in the Netherlands36)
that manage TBs of geospatial data and make some of it
available as linked data, it is important to develop RDF
stores that can manage big linked geospatial data [42].
This is currently done in the European project Extreme
Earth37 that our group coordinates. Extreme Earth stud-
ies big linked geospatial data coming from the Earth
observation programme Copernicus38 of the European
Union.

36https://www.kadasterdata.nl/
37http://earthanalytics.eu/
38https://www.copernicus.eu/en
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