
EU-IST Project IST-1999-10132 On-To-Knowledge

On-To-Knowledge: Content-Driven Knowledge Management Tools through Evolving Ontologies

Sesame: A generic Architecture for
Storing and Querying
RDF and RDF Schema

Jeen Broekstra
Arjohn Kampman�

jeen.broekstra, arjohn.kampman � @aidministrator.nl

Summary. On-To-Knowledge project deliverable 10.
RDF and RDF Schema provide the first W3C standard to enrich the Web with machine-processable semantic data. How-
ever, to be able to use this semantic data, a scalable, persistent store for RDF and RDF Schema and a powerful query
engine using an expressive query language are needed.
We have developed Sesame, an architecture for efficient storage and expressive querying of large quantities of meta-data
in RDF and RDF Schema. As a storage facility, Sesame’s design and implementation are independent from any specifc
storage device that will be used. Thus, Sesame can be implemented on top of a variety of storage devices, such as
relational databases, triple stores, object-oriented databases etc, without having to change the query engine. Sesame’s
query engine implements RQL, the only query language to date that offers native support for RDF Schema semantics.
We discuss both the rationale and the design of Sesame, as well as its implementation and our first experiences with this
implementation.
Sesame is available online at http://sesame.aidministrator.nl/. Installation instructions are included in the
appendix.

Copyright c
�

2001 Aidministrator Nederland b.v.

Document Id.
Project
Issuer
Date
Status
Distribution

A12R/OTK/2001/D10/v1.0
EU-IST On-To-Knowledge IST-1999-10132
Aidministrator Nederland b.v.
1st October, 2001
Final
Public

On-To-Knowledge Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European Communities as project
number IST-1999-10132. The partners in this project are: Vrije Universiteit Amsterdam VUA (coordinator, NL), University of Karlsruhe (Germany),
Schweizerische Lebensversicherungs- und Rentenanstalt/Swiss Life (Switzerland), British Telecommunications plc (UK), CognIT a.s. (Norway),
EnerSearch AB (Sweden), AIdministrator Nederland BV (NL).

Vrije Universiteit Amsterdam (VUA)
Division of Mathematics and Informatics W&I
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 4447718, Fax: +31 20 872 27 22
Contactperson: Dieter Fensel
E-mail: dieter@cs.vu.nl

University of Karlsruhe
Institute AIFB
Kaiserstr. 12
D-76128 Karlsruhe
Germany
Tel: +49 721 608392, Fax: +49 721 693717
Contactperson: R. Studer
E-mail: studer@aifb.uni-karlsruhe.de

Schweizerische Lebensversicherungs-
und Rentenanstalt / Swiss Life
Swiss Life Information Systems Research Group
General Guisan-Quai 40
8022 Zürich
Switzerland
Tel: +41 1 284 4061, Fax: +41 1 284 6913
Contactperson: Ulrich Reimer
E-mail: Ulrich.Reimer@swisslife.ch

British Telecommunications plc
BT Adastral Park
Martlesham Heath
IP5 3RE Ipswich
United Kingdom
Tel: +44 1473 605536
Fax: +44 1473 642459
Contactperson: John Davies
E-mail: John.nj.Davies@bt.com

CognIT a.s
Busterudgt 1.
N-1754 Halden
Norway
Tel: +47 69 1770 44, Fax: +47 669 006 12
Contactperson: Bernt. A.Bremdal
E-mail: bernt@cognit.no

EnerSearch AB
Carl Gustafsväg 1
SE 205 09 Malmö
Sweden
Tel: +46 40 25 58 25; Fax: +46 40 611 51 84
Contactperson: Hans Ottosson, Fredrik Ygge
E-mail: hans.ottosson,fredrik.ygge@enersearch.se

AIdministrator Nederland BV
Julianaplein 14B
3817 CS Amersfoort
The Netherlands
Tel: +31 33 4659987, Fax: +31 33 4659987
Contactperson: Jos van der Meer
E-mail: Jos.van.der.Meer@aidministrator.nl

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

Contents
1 Introduction 2

2 RDF and RDF Schema 2
2.1 RDF . 2
2.2 RDF Schema . 3

3 The need for an RDF/S Query Language 3
3.1 Querying at the syntactic level . 4
3.2 Querying at the structure level . 5
3.3 Querying at the semantic level: RQL . 5
3.4 Conclusion . 6

4 Sesame’s Architecture 6
4.1 Overview . 6
4.2 The Repository Abstraction Layer . 8

4.2.1 Stacking Abstraction Layers . 9
4.3 The Repository . 9

4.3.1 PostgreSQL . 10

5 Sesame’s Functional Modules 10
5.1 The RQL Query Module . 10
5.2 The Admin Module . 12
5.3 The RDF Export Module . 12

6 Experiences 13
6.1 Using RQL . 13
6.2 Deployment in On-To-Knowledge . 13
6.3 Ontologies and RDF Schema . 14
6.4 Using PostgreSQL . 15
6.5 Scalability issues . 15

7 Future directions 15
7.1 Repository performance . 15
7.2 DAML+OIL support . 16
7.3 Admin Module . 16

8 Conclusion 16

A Installation instructions 17
A.1 Required software . 17
A.2 PostgreSQL . 17
A.3 Tomcat and Java 2 SDK . 18
A.4 Installing Sesame . 18
A.5 Configuring Sesame . 18

A.5.1 databases.conf . 18
A.5.2 web.xml . 19

A.6 Testing your installation . 19
A.7 Adding repositories . 19
A.8 Removing repositories . 20
A.9 Notes from the developers . 20

A12R/OTK/2001/D10/v1.0 1st October, 2001 1

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

1 Introduction
The Resource Description Framework (RDF) [Lassila and Swick, 1999] is a W3C Recommendation for the
formulation of meta-data on the World Wide Web. RDF Schema [Brickley and Guha, 2000] extends this
standard with the means to specify vocabulary and to model object structures. These techniques will enable
the enrichment of the Web with machine-processable semantics, thus giving rise to what has been dubbed
the Semantic Web.

However, simply having this data available is not enough. Tooling is needed to process the information,
to transform it, to reason with it. As a basis for this, we have developed Sesame, an architecture for efficient
storage and expressive querying of large quantities of RDF meta-data. Sesame is being developed by Aid-
ministrator Nederland b.v.1 as part of the European IST project On-To-Knowledge2 [Fensel et al., 2000].

This report is organized as follows. In section 2 we give a short introduction to RDF and RDF Schema.
Readers who are already familiar with these languages can safely skip this section. In section 3 we discuss
why a query language specifically tailored to RDF and RDF Schema is needed, over and above existing
query languages such as XQuery. In section 4 and 5 we look at Sesame’s architecture in some detail.
Section 6 discusses our experiences with Sesame until now, and section 7 looks into possible future devel-
opments. Finally we provide our conclusions in section 8.

2 RDF and RDF Schema
RDF is a W3C recommendation that was originally designed to standardize the definition and use of
metadata-descriptions of Web-based resources. However, RDF is equally well suited for representing arbi-
trary data, be they meta-data or not.

2.1 RDF
The basic building block in RDF is an object-attribute-value triple, commonly written as �����	��

� . That is,
an object � has an attribute � with value
 . Another way to think of this relationship is as a labeled edge
between two nodes: � �����������
�� .

This notation is useful because RDF allows objects and values to be interchanged. Thus, any object
from one triple can play the role of a value in another triple, which amounts to chaining two labeled edges
in a graphic representation. The graph in figure 1 for example, expresses the following relationships:

hasName
(’http://www.famouswriters.org/twain/mark’,
"Mark Twain")

hasWritten
(’http://www.famouswriters.org/twain/mark’,
’http://www.books.org/ISBN0001047582’)

title
(’http://www.books.org/ISBN0001047582’,
"The Adventures of Tom Sawyer")

RDF also allows a form of reification in which any RDF statement itself can be the object or value of
a triple. This means graphs can be nested as well as chained. On the Web this allows us, for example, to
express doubt or support for statements created by other people. Finally, it is possible to indicate that a
given object is of a certain type, such as stating that “ISBN0001047582” is of the type Book, by creating a
type edge referring to the Book definition in an RDF schema:

1See http://www.aidministrator.nl/
2On-To-Knowledge (IST-1999-10132). See http://wwww.ontoknowledge.org/

A12R/OTK/2001/D10/v1.0 1st October, 2001 2

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

.../twain/mark .../ISBN0001047582

"The Adventures of Tom Sawyer""Mark Twain"

hasWritten

hasName title

Figure 1: An example RDF data graph, capturing three statements

type
(’http://www.books.org/ISBN0001047582’,
’http://www.description.org/schema#Book’)

The RDF Model and Syntax specification also proposes an XML syntax for RDF data models. One
possible serialisation of the above relations in this syntax, would look like this:
<rdf:Description rdf:about="http://www.famouswriters.org/twain/mark">

<s:hasName>Mark Twain</s:hasName>
<s:hasWritten rdf:resource="http://www.books.org/ISBN0001047582"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.books.org/ISBN0001047582">
<s:title>The Adventures of Tom Sawyer</s:title>
<rdf:type rdf:resource="http://www.description.org/schema#Book"/>

</rdf:Description>

Since the proposed XML syntax allows many alternative ways of writing down information (and indeed
still other syntaxes may be introduced), the above XML syntax is just one of many possibilities of writing
down an RDF model in XML.

It is important to note that RDF is designed to provide a basic object-attribute-value model for Web-
data. Other than this intended semantics – described only informally in the standard – RDF makes no data
modeling commitments. In particular, no reserved terms are defined for further data modeling. As with
XML, the RDF data model provides no mechanisms for declaring vocabulary that is to be used.

2.2 RDF Schema
RDF Schema is a mechanism that lets developers define a particular vocabulary for RDF data (such as
hasWritten) and specify the kinds of objects to which these attributes can be applied (such as Writer). RDF
Schema does this by pre-specifying some terminology, such as Class, subClassOf and Property, which
can then be used in application-specific schemata. RDF Schema expressions are also valid RDF expressions
– in fact, the only difference with ‘normal’ RDF expressions is that in RDF Schema an agreement is made
on the semantics of certain terms and thus on the interpretation of certain statements. For example, the
subClassOf property allows the developer to specify the hierarchical organization of classes. Objects can
be declared to be instances of these classes using the type property. Constraints on the use of properties
can be specified using domain and range constructs.

Above the dotted line in figure 2, we see an example RDF schema that defines vocabulary for the RDF
example we saw earlier: Book, Writer and FamousWriter are introduced as classes, and hasWritten is
introduced as a property. A specific instance is described in terms of this vocabulary below the dotted line.

3 The need for an RDF/S Query Language
RDF documents and RDF schemata can be considered at three different levels of abstraction:

1. at the syntactic level they are XML documents3

3Actually, this is not necessarily true; non-XML syntaxes for RDF exist, but XML is the most widely used syntax for RDF.

A12R/OTK/2001/D10/v1.0 1st October, 2001 3

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

.../twain/mark

FamousWriter

.../ISBN0001047582

BookhasWrittenWriter

subClassOf

type Data

Schema

domain range

hasWritten

type

Figure 2: An example RDF Schema, defining vocabulary and a class hierarchy

2. at the structure level they consist of a set of triples

3. at the semantic level they constitute one or more graphs with partially predefined semantics.

We can query these documents at each of these three levels. We will briefly consider the pros and cons
of doing so for each level in the next sections. This will lead us to conclude that RDF(S) documents should
really be queried at the semantic level. We will briefly discuss RQL, a language for querying RDF(S)
documents at the semantic level.

3.1 Querying at the syntactic level
As we have seen in section 2, any RDF model (and therefore any RDF schema) can be written down in
XML notation. It would therefore seem reasonable to assume that we can query RDF using an XML query
language (for example, XQuery [Chamberlin et al., 2001]).

However, this approach disregards the fact that RDF is not just an XML dialect, but has its own data
model that is very different from the XML tree structure. Relationships in the RDF data model that are not
apparent from the XML tree structure become very hard to query.

As an example, let us look again at the XML description of the RDF model in figure 1.

<rdf:Description rdf:about="http://www.famouswriters.org/twain/mark">
<s:hasName>Mark Twain</s:hasName>
<s:hasWritten rdf:resource="http://www.books.org/ISBN0001047582"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.books.org/ISBN0001047582">
<s:title>The Adventures of Tom Sawyer</s:title>
<rdf:type rdf:resource="http://www.description.org/schema#Book"/>

</rdf:Description>

In an XML query language such as XQuery [Chamberlin et al., 2001], expressions to traverse the data
structure are tailored towards traversing a node-labeled tree. However, the RDF data model in this instance
is a graph, not a tree, and moreover, both its edges (properties) and its nodes (subjects/objects) are labeled.
In querying at the syntax level, this is literally left as an excercise for the query builder: one cannot query
the relation between the resource signifying ‘Mark Twain’ and the resource signifying ‘The Adventures of
Tom Sawyer’ without knowledge of the syntax that was used to encode the RDF data in XML.

Ideally, we would want to formulate a query like “Give me all the relationships that exist between Mark
Twain and The Adventures of Tom Sawyer”. However, using only the XML syntax, we are stuck with
formulating an awkward query like “Give me all the elements nested in a Description element with an
about attribute with value ’http://www.famouswriters.org/twain/mark’, of which the value of its resource
attribute occurs elsewhere as the about attribute value of a Description element which has a nested element
title with the value ‘The Adventures of Tom Sawyer’.”

A12R/OTK/2001/D10/v1.0 1st October, 2001 4

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

Not only is this approach inconvenient, it also disregards the fact that the XML syntax for RDF is not
unique: different ways of encoding the same information in XML are possible and in use currently. This
means that one query will never be guaranteed to retrieve all the answers from an RDF model.

3.2 Querying at the structure level
When we abstract from the (XML linearization, or any other) syntax, any RDF document represents a set
of triples, each triple representing a statement of the form Object-Attribute-Value. A number of query
languages have been proposed and implemented that regard RDF documents as such a set of triples, and
that allow to query such a triple set in various ways. See http://perso.enst.fr/˜ta/web/rdf/
rdf-query.html for a recent overview.

The RDF/RDF Schema example from figure 2 corresponds to the following set of triples:

(type Book Class)
(type Writer Class)
(type FamousWriter Class)
(subClassOf FamousWriter Writer)
(type hasWritten Property)
(domain hasWritten Writer)
(range hasWritten Writer)
(type twain/mark FamousWriter)
(type ISBN0001047582 Book)
(hasWritten twain/mark ISBN0001047582)

An RDF query language such as, for example, Squish [Miller, 2001] would allow us to query which re-
sources are known to be of type FamousWriter:

SELECT ?x
FROM somesource
WHERE (rdf::type ?x FamousWriter)

The clear advantage of such a query is that it directly addresses the RDF data model, and that it is therefore
independent of the specific XML syntax that has been chosen to represent the data.

However, a shortcoming of Squish or any query language at this level is that it interprets any RDF
model only as a set of triples, including those elements which have been given a special semantics in RDF
Schema. For example, since http://www.famouswriters.org/twain/mark is of type FamousWriter, and
since FamousWriter is a subclass of Writer, http://www.famouswriters.org/twain/mark is also of type
Writer, by virtue of the intended RDF Schema semantics of type and subClassOf. However, there is no
triple that explicitly asserts this fact. As a result, the query

SELECT ?x
FROM somesource
WHERE (rdf::type ?x Writer)

will fail because the query only looks for explicit triples in the store, whereas the triple (type /twain/mark

Writer) is not necessarily present in the store, but is implied by the semantics of RDF Schema. Notice that
simply expanding the query into something like

SELECT ?x
FROM somesource
WHERE (rdf::type ?x ?c1),

(rdfs::subClassOf ?c1 Writer)
OR ?c1 ˜ Writer

will solve the problem in this specific example, but does not solve the problem in general.

3.3 Querying at the semantic level: RQL
What is clearly required is a query language that is sensitive to the semantics of the RDF Schema primi-
tives. RQL [Karvounarakis et al., 2000, Alexaki et al., 2000] is the first (and to the best of our knowledge

A12R/OTK/2001/D10/v1.0 1st October, 2001 5

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

currently the only) proposal for a declarative query language for RDF and RDF Schema. It is being de-
veloped within the European IST project C-Web and its followup project MESMUSES by the Institute of
Computer Science at FORTH, in Greece4.

RQL adopts the syntax of OQL [Cattel et al., 2000]. As OQL, RQL is a functional language: the output
of RDF Schema queries is again legal RDF code, which allows the output of queries to function as input
for subsequent queries.

RQL is defined by means of a set of core queries, a set of basic filters, and a way to build new queries
through functional composition and iterators.

The core queries are the basic building blocks of RQL, which give access to the RDF Schema specific
contents of an RDF triple store, with queries such as Class (retrieving all classes), Property (retrieving
all properties) or Writer (returning all instances of the class with name Writer). This last query returns of
course also all instances of subclasses of Writer, since these are also instances of the class Writer, by virtue
of the semantics of RDF Schema. We can ask for all direct instances of Writer (i.e. ignoring all instances
of subclasses) through the query ˆWriter.

RQL can also query the structure of the subclass hierarchy. In our example, the query subClas-
sOf(Writer) would return the class FamousWriter as its only result. In general, this would return all
direct and indirect subclasses of Writer, since RQL is aware of the transitivity of the subclass relation. The
query subClassOfˆ(Writer) would return only the immediate subclasses.

Of course, being based on OQL, RQL also allows a select-from-where construct.
A final crucial feature of RQL are the path expressions. These allow us to match patterns along entire

paths in RDF/RDF Schema graphs, such as the one depicted in figure 2. For example, the query

select Y
from FamousWriter � X � .hasWritten � Y �
returns all books written by famous writers, effectively doing pattern-matching along a path in the graph of
figure 2. Note that RQL path expressions enable free mixing of data and schema information.

3.4 Conclusion
The previous subsections have argued that RDF data should not be queried at the level of their (rather
incidental) XML encoding, and that RDF Schema data should not be regarded as simply a set of RDF triples,
since all intended semantics of the RDF Schema primitives are then lost. Consequently, we should be using
a query language that is sensitive to this RDF Schema semantics. RQL is a powerful (and currently the
only) candidate for such a language. Sesame provides the first implementation of a query engine for
this language (together with the implementation by ICS-FORTH5, developed independently around
the same time).

In the next few sections, we will discuss the architecture we have designed for a query engine for RQL.

4 Sesame’s Architecture
Sesame is an architecture that allows persistent storage of RDF data and schema information and subsequent
querying of that information. In section 4.1, we present an overview of Sesame’s architecture. In the
sections following that, we look in more detail at several components.

4.1 Overview
An overview of Sesame’s architecture is shown in Figure 3. In this section we will give a brief overview of
the main components.

For persistent storage of RDF data, Sesame needs a scalable repository. Naturally, a Data Base Man-
agement System (DBMS) comes to mind, as these have been used for decades for storing large quantities

4See http://www.ics.forth.gr/
5See http://139.91.183.30:9090/RDF/

A12R/OTK/2001/D10/v1.0 1st October, 2001 6

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

Request Router

Admin Module Query Module

HTTP Protocol Handler SOAP Protocol Handler

Export Module

Repository Abstraction Layer

Repository

client 1 client 2 client 3

Se
sa

m
e

HT
TP

HT
TP

SO
AP

Figure 3: Sesame’s architecture

of data. In these decades, a large number of DBMS’s have been developed, each having their own strengths
and weaknesses, targeted platforms, and API’s. Also, for each of these DBMS’s, the RDF data can be stored
in numerous ways.

As we would like to keep Sesame DBMS-independent and it is impossible to know which way of storing
the data is best fitted for which DBMS, all DBMS-specific code is concentrated in a single architectural layer
of Sesame: the Repository Abstraction Layer (RAL).

This RAL is an interface that offers RDF-specific methods to its clients and translates these methods to
calls to its specific DBMS. An important advantage of the introduction of such a separate layer is that
it makes it possible to implement Sesame on top of a wide variety of repositories without changing any
of Sesame’s other components. Section 4.3 describes a number of possible repository implementations.

Sesame’s functional modules are clients of the RAL. Currently, there are three such modules:

� The RQL query module.
This module evaluates RQL queries posed by the user (see section 5.1).

� The RDF administration module.
This module allows incremental uploading of RDF data and schema information, as well as the
deleting of information (see section 5.2).

� The RDF export module.

A12R/OTK/2001/D10/v1.0 1st October, 2001 7

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

This module allows the extraction of the complete schema and/or data from a model in RDF format
(see section 5.3).

Depending on the environment in which it is deployed, different ways to communicate with the Sesame
modules may be desirable. For example, communication over HTTP may be preferable in a Web context,
but in other contexts protocols such as RMI (Remote Method Invocation)6 or SOAP (Simple Object Access
Protocol) [Box et al., 2000] may be more suited.

In order to allow maximal flexibility, the actual handling of these protocols has been placed outside
the scope of the functional modules. Instead, protocol handlers are provided as intermediaries between the
modules and their clients, each handling a specific protocol.

The introduction of the repository abstraction layer and the protocol handlers makes Sesame into
a generic architecture for RDF/S storage and querying, rather than just a particular implementa-
tion of such a system. Adding additional protocol handlers makes it easy to connect Sesame to different
operating environments. The construction of concrete RAL’s will be discussed in the next section.

Sesame’s architecture has been designed with extensibility and adaptability in mind. The possibility to
use other kinds of repositories has been mentioned before. Adding additional modules or protocol handlers
is also possible. The only part that is fixed in the architecture is the RAL.

4.2 The Repository Abstraction Layer
As we have seen in the previous section, the Repository Abstraction Layer (RAL) offers a stable, high level
interface for talking to repositories. This RAL is defined by an API that offers functionality to add data to,
or to retrieve or delete data from the repository. RAL-implementations translate calls to the API methods
into operations on the underlying repository.

Rather than adopting or extending an existing RDF API proposal, such as the “Stanford API” draft
proposed by Sergey Melnik [Melnik, 2000], we have created our own set of interfaces.

The main differences between our proposal and the Stanford API are that:

a. The Stanford API is very much targeted at data that is kept in memory, whereas our API is considerably
more “lightweight” as all data is returned one-at-a-time in data streams.

b. Our API offers specific operations that support RDF Schema semantics, such as subsumption reasoning,
whereas the Stanford API only offers RDF-related functionality.

The advantage of returning data in streams (point a) is that at any one time only a small portion of the
data is kept in memory. This streaming approach is also used in the functional modules, and even in the
protocol handlers which give results as soon as they are available. This approach is needed for Sesame to be
able to scale to large volumes of data without requiring exceptionally expensive hardware. In fact, Sesame
requires close to zero memory for data and only a small amount of memory for the program to run.

This, together with the option of using a remote data store for the repository (see section 4.3) makes
Sesame potentially suitable for use as infrastructure in highly constrained environments such as portable
devices.

Of course, reading everything from a repository and keeping nothing in memory seriously hurts per-
formance. This performance problem can be solved by selectively caching data in memory7. For small
data volumes it is even possible to cache all data in memory, in which case the repository only serves as a
persistent storage. Sesame’s architecture allows all of this to be done in a completely transparent way, as
will be shown in the next section.

6See http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html
7A good DBMS implementation will also cache query results to improve performance

A12R/OTK/2001/D10/v1.0 1st October, 2001 8

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

4.2.1 Stacking Abstraction Layers

An important feature of the RAL is that it is possible to put one on top of the other. To Sesame’s functional
modules (the admin, query and export modules) this is completely transparent, as they will only communi-
cate with the RAL at the top of the stack (see figure 4). The RAL at the top can perform some action when
the modules make calls to it, and then forward these calls to the RAL beneath it. This process continues
until one of the RALs finally handles the actual retrieval request, propagating the result back up again.

RAL 1

RAL n

Repository

functional module

Figure 4: RALs can be stacked to add functionality

One good example where this construction makes sense is when implementing a cache. We imple-
mented a RAL that caches all schema data in a dedicated data structure in main memory. This schema data
is often very limited in size and is requested very frequently. At the same time, the schema data is the most
difficult to query from a DBMS because of the transitivity of the subClassOf and subPropertyOf proper-
ties. This schema-caching RAL can be placed on top of arbitrary other RALs, handling all calls concerning
schema data. The rest of the calls are forwarded to the underlying RAL.

Another important task that can be handled by a RAL is concurrency handling. Since any given RQL
query is broken down into several operations on the RAL level, it is important to preserve repository con-
sistency over multiple transactions. We implemented a RAL that selectively blocks and releases read and
write access to repositories, on a first-come-first-serve basis.

4.3 The Repository
Thanks to the Repository Abstraction Layer, Sesame can be based on any kind of repository that is able to
store RDF. The following is a list of possible concrete implementations of the repository, each with their
own advantages.

� DMBSs
Any kind of database can be used: relational databases (RDBMS), object-relational databases (OR-
DBMS), etc.

A12R/OTK/2001/D10/v1.0 1st October, 2001 9

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

� Existing RDF stores
A number of RDF stores are currently in development ([Guha, 2001, Reggiori, 2001, Beckett, 2001,
Wagner, 2001]). Sesame can use such an RDF store if a RAL is written that knows how to talk to that
specific RDF store.

� RDF files
Files containing RDF can be used as repositories too. A flat file is not very practical on its own, as
it will be painfully slow in storing and retrieving data. However, when combined with a RAL that
caches all of the data in memory it becomes a good alternative for small volumes of data.

� RDF network services
Apart from performance, there is no need for the repository to be located close to Sesame. Any
network service that offers basic functionality for storing, retrieving and deleting RDF data can be
used by Sesame. An example of a system offering such functionality is, of course, Sesame itself.
Many of the RDF stores mentioned above can also be approached as Web services.

The last option in particular is very interesting. An initial query is sent to a Sesame server somewhere
on the Web. This server can use not only its local repository to answer the query, but also any number of
remote repositories that it knows about. In turn, some of these remote repositories might themselves either
answer the query using local data-stores, or in turn again approach yet other remote repositories. This
opens up the possibility of a highly distributed architecture for RDF(S) storing and querying, that has been
unexplored until now, but that is truly in the spirit of the Semantic Web.

4.3.1 PostgreSQL

The first repository that has been used with Sesame is PostgreSQL8. PostgreSQL is a freely available (open
source) object-relational DBMS that supports many features that normally can only be found in commercial
DBMS implementations.

One of the main reasons for choosing PostgreSQL is that it is an object-relational DBMS, meaning that
it supports subtable relations between its tables. As these subtable relations are also transitive, we use these
to model the class and property subsumption relations of RDF Schema.

The RAL that was implemented uses a dynamic database schema that was inspired by the schema shown
in [Karvounarakis et al., 2000]. New tables are added to the database whenever a new class or property is
added to the repository. If a class is a subclass of other classes, the table created for it will also be a subtable
of the tables for the superclasses. Likewise for properties being subproperties of other properties. Instances
of classes and properties are inserted as values into the appropriate tables. Figure 5 gives an impression of
the contents of a database containing the data from figure 2.

The actual schema involves one more table called resources. This table contains all resources and
literal values, mapped to a unique ID. These ID’s are used in the tables shown in the figure to refer to the
resources and literal values. The resources table is used to minimize the size of the database. It ensures
that resources and literal values, which can be quite long, only occur once in the database, saving potentially
large amounts of memory.

5 Sesame’s Functional Modules
In this section, we briefly describe the three modules that are currently implemented in Sesame.

5.1 The RQL Query Module
As we have seen in section 4, one of the three modules currently implemented in Sesame is an RQL query
engine. RQL [Karvounarakis et al., 2000, Alexaki et al., 2000] is a proposal for a declarative language

8See http://www.postgresql.org/

A12R/OTK/2001/D10/v1.0 1st October, 2001 10

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

uri

Artist

uri

Resource creates
targetsource

rodin424

Painter

crucif.jpg

source target

works
targetsource

Artist

SubClassOf
source target

Painter Artist
Resource

rodin424

uri

paints

creates

source target

paints works

creates Artist

Domain

creates

Range

Artifact

source source targettarget

Resource Literalname name

Class
uri

Artist
Resource

Property
uri

creates
name

paints

SubPropertyOf

uri

Artifact

D
at

a
Sc

he
m

a

Figure 5: Impression of the object-relational schema currently used with PostgreSQL

for RDF and RDF Schema. It was originally developed within the European IST project C-Web and its
followup project MESMUSE by the Institute of Computer Science at FORTH, in Greece, and currently is
being jointly developed by ICS-FORTH and Aidministrator.

In Sesame, a version of RQL was implemented that is slightly different from the language proposed
by [Karvounarakis et al., 2000]. The Sesame version of RQL features better compliance to W3C specifica-
tions, including support for optional domain- and range restrictions as well as multiple domain- and range
restrictions. See [Broekstra and Kampman, 2001] for details.

The Query Module follows the path depicted in figure 6 when handling a query. After parsing the query
and building a query tree model for it, this model is fed to the query optimizer which transforms the query
model into an equivalent model that will evaluate more efficiently.

Query
Optimizer

RQL
Parser

RQL
Query

Optimized Query modelQuery model

Figure 6: A query is parsed and then optimized into a query object model

The optimized model of the query is subsequently evaluated in a streaming fashion, following the tree
structure into which the query has been broken down. Each object represents a basic unit in the original
query and evaluates itself, fetching data from the RAL where needed. The main advantage of this approach

A12R/OTK/2001/D10/v1.0 1st October, 2001 11

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

is that results can be returned in a streaming fashion, instead of having to build up the entire result set in
memory first.

In Sesame, RQL queries are translated (via the object model) into a set of calls to the RAL. This
approach means that the main bulk of the actual evaluation of the RQL query is done in the RQL query
engine itself.

For example, when a query contains a join operation over two subqueries, each of the subqueries is
evaluated, and the join operation is then executed by the query engine on the results.

Another approach would be to directly translate as much of the RQL query as possible to a query specific
for the underlying repository. An advantage of this approach is that, when using a DBMS, we would get
all its sophisticated query evaluation and optimization mechanisms for free. However, a large disadvantage
is that the implementation of the query engine is directly dependent on the repository being used, and the
architecture would lose the ability to easily switch between repositories.

This design decision is one of the major differences between Sesame and the RDF Suite implementation
of RQL by ICS-FORTH (see [Alexaki et al., 2000]). The RDF Suite implementation relies on the under-
lying DBMS for query optimisation. However, this dependency means that RDF Suite cannot as easily be
transported to run on top of another storage engine.

A natural consequence of our choice to evaluate queries in the RAL is that we need to devise several
optimization techniques in the engine, since we cannot rely on any given DBMS to do this for us.

5.2 The Admin Module
In order to be able to insert RDF data and schema information into a repository, Sesame provides an admin
module. The current implementation is rather simple and offers two main functions:

1. incrementally adding RDF data/schema information;

2. clearing a repository.

The admin module retrieves its information from an RDF(S) source (usually an online RDF(S) docu-
ment in XML-serialized form) and parses it using a streaming RDF parser (currently, we use the SiRPAC
RDF parser [Barstow and Melnik, 2000]). The parser delivers the information to the admin module on a
per-statement basis: ������� ���!� . The admin subsequently checks each statement for consistency with the
information already present in the repository, and infers implied information if necessary, as follows:

� if � equals type, then the admin infers that � must be a class.

� if � equals subClassOf, then the admin infers that both � and � are classes.
� if � equals subPropertyOf, then the admin infers that both � and � are properties.
� if � equals domain or range, the admin infers that � must be a property and � must be a class.

In all these cases, the admin module checks whether the inferred information is consistent with the
current contents of the repository and if so, the inferred information is added to the repository.

If the admin module encounters a duplicate statement (i.e. a fact that is already known in the repository),
this is reported but otherwise ignored.

5.3 The RDF Export Module
The RDF Export Module is a very simple module. This module is able to export the contents of a repository
formatted in XML-serialized RDF. The idea behind this module is that it supplies a basis for using Sesame
in combination with other RDF tools, as all RDF tools will at least be able to read this format.

Some tools, like ontology editors, only need the schema part of the data. On the other hand, tools that
don’t support RDF Schema semantics will probably only need the non-schema part of the data. For these
reasons, the RDF Export Module is able to selectively export the schema, the data, or both.

A12R/OTK/2001/D10/v1.0 1st October, 2001 12

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

6 Experiences
Our implementation of Sesame can be found at http://sesame.aidministrator.nl/ (Oct 2001),
and is freely available for non-commercial use. The implementation follows the generic architecture de-
scribed in this paper, using the following concrete implementation choices for the modules:

� The repository is realized by PostgreSQL.

� A protocol handler is realised using HTTP.

� The admin module uses the SiRPAC RDF parser.

In this section, we briefly report on our experiences with various aspects of this implementation.

6.1 Using RQL
As we have seen in section 5.1, Sesame supports querying using a declarative language called RQL. RQL
is a powerful language that offers very expressive querying capabilities. One of the most distinguishing
features of RQL is its built-in support for RDF Schema semantics and the possibility to combine data and
schema information in a single query.

The expressiveness of RQL as implemented in Sesame has shown itself to be more than adequate for the
test cases we have tried it on sofar. One minor lack (or rather, inconvenience) is the omission of a type()
function that returns the class(es) to which a particular resource belongs, but this could be easily added.
Also, RQL does not support reification, but in practice we have not come across examples where this was a
problem.

6.2 Deployment in On-To-Knowledge
Sesame is currently being deployed as the central infrastructure for the On-To-Knowledge case studies.
Figure 7 shows how Sesame serves as the central data repository for a number of tools:

� OntoExtract, developed by CognIT a.s., extracts ontological conceptual structures from natural lan-
guage documents. OntoWrapper performs the same task for semi-structured information sources.
These ontologies are uploaded for storage in Sesame.

� The resulting ontologies can be downloaded into OntoEdit, an editor for ontologies developed by the
Institute AIFB of the University of Karlsruhe. When the user has edited an ontology, the result is
again stored in Sesame.

� The resulting ontologies are downloaded into RDF Ferret, a user front-end, developed by BT Adastral
Park Research Labs, that provides search and query facilities for webdata based on the ontologies.

� Spectacle generates web-sites whose navigation structure are based on the ontologies and data stored
in Sesame.

� OntoShare allows end-users to share their own information items (documents, pictures) using the
ontological structure stored in Sesame.

Because Sesame is a server-based application, the integration of all this functionality is done simply by
establishing HTTP connections to Sesame.

A12R/OTK/2001/D10/v1.0 1st October, 2001 13

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

Τηισ τεξτ ισ Τηισ τεξτ ισ Τηισ τεξτ ισ Τηισ τεξτ ισ
αβουτ χαρσαβουτ χαρσαβουτ χαρσαβουτ χαρσ
εϖεν τηουγηεϖεν τηουγηεϖεν τηουγηεϖεν τηουγη
ψου χαν� τ ψου χαν� τ ψου χαν� τ ψου χαν� τ
ρεαδ ιτ ρεαδ ιτ ρεαδ ιτ ρεαδ ιτ

���
������ 	
�

�
���
����� ���

��� ���

�������������������������

����
����������
����������

��� !��� ������"�����������

������������ #����$�

��� !���
����%���

&��������

����%����������'������

����&(�����

)��*���"�
%�"�����

&���+�

�,� -�����

Figure 7: Sesame is positioned as a central tool in the On-To-Knowledge project

6.3 Ontologies and RDF Schema
While developing Sesame, many unclarities in the RDF Schema specification were uncovered. One of the
reasons for this is that RDF Schema is defined in natural language: no formal description of its semantics
is given. As a result of this, the RDF Schema specification even contains some inconsistencies.

Another reason why RDF Schema is so hard to understand is that RDF Schema is self-describing in
the sense that the definition of its terms is itself done in RDF Schema. This leads to strange circular
dependencies in the term definitions (e.g. the term Class is both a subclass of and an instance of Resource,
which is itself an instance of Class again). In fact, primitives from different meta-levels of description have
been mapped to identical terms, resulting in a rather unclear specification (see also [Nejdl et al., 2000]).

One of the consequences of the circular dependencies is that RDF Schema is not only a language for,
but also a part of ontologies. This means that all primitives defined in RDF Schema (i.e. subClassOf,
subPropertyOf, domain, range, etc.) are also in the ontology. We would argue that this is counterintuitive.
At the very least this approach deviates from approaches taken by most other ontology languages.

A12R/OTK/2001/D10/v1.0 1st October, 2001 14

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

6.4 Using PostgreSQL
Our experiences with the database schema on PostgreSQL, as shown in section 4.3.1, are not completely
satisfactory. Both data retrieval and data insertion are not as fast as we would like. Especially incremental
uploads of schema data can be very slow, since table creation is very expensive in PostgreSQL. Even worse,
when adding a new subClassOf relation between two existing classes, the complete class hierarchy starting
from the subclass needs to broken down and rebuilt again because subtable relations can not be added to an
existing table; the subtable relations have to be specified when a table is created. Once created, the subtable
relations are fixed.

6.5 Scalability issues
We have been experimenting with several data sets and/or ontologies that are currently available on the
Web. The largest set of data that we have uploaded and subsequently queried was the collection of nouns
from Wordnet9, consisting of about 400,000 RDF statements. This data set almost completely exists of
RDF data (i.e. hardly any schema information). While we have not performed any structured benchmark
testing, the following points are noteworthy.

We would like to stress that all our experiments have been done using a desktop computer (Sun Ul-
traSPARC 5, 256MB RAM) to run Sesame. Java Servlets running on a web server were used as protocol
handlers to communicate over HTTP. The database schema described in section 4.3.1 in combination with
PostgreSQL version 7.1.2 is used as repository.

The uploading of the information is not as fast as we would like, mainly due to the database schema
being used. Just adding a data statement to the database involves doing the following steps:

� Check whether the property is already known. If not, add it and create a table for it.

� Check whether the subject is already known, adding it if not.

� Check whether the object is already known, adding it if not.

� Add a row representing the statement to the appropriate table.

Most of these steps have to be performed in sequential order, which is very time-intensive. Uploading
the Wordnet nouns took approximately 94 minutes, which comes down to 71 statements per second. As
was to be expected, the upload did not show any significant signs of slowing down as the amount of data in
the repository increased (the amount of data is not very large by DBMS standards).

Querying the information proved to slower than expected too, for exactly the same reasons. Due to
the distributed storage over multiple tables, retrieving data from the repository means doing many joins on
tables, hindering performance. Partly this might be solved by investing more in hardware, partly by looking
at alternative DBMS’s.

7 Future directions

7.1 Repository performance
The experiences reported about in the previous section have led us to several future developments that
we are going to investigate for Sesame. Most prominent of these is the migration of Sesame to other
repositories and database schemas to boost query performance. A first option that we are investigating is
the implementation of a RAL based on a traditional ’pure’ relational DBMS, that is, a RAL that only uses
standard SQL. Not only can such a RAL be used on a wide variety of DBMS’s, we expect to be able to
improve admin and query performance as well.

9This collection can be found in RDF form at http://www.semanticweb.org/library/

A12R/OTK/2001/D10/v1.0 1st October, 2001 15

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

7.2 DAML+OIL support
Currently, Sesame understands the semantics of RDF and RDF Schema. We would like to extend this to
more powerful languages like DAML+OIL [Horrocks et al., 2001]. DAML+OIL is an extension of RDF
Schema and offers additional primitives for creating schemata. Examples of the additional expressive power
of DAML+OIL are:

� the use of arbitrary class expressions, including disjunction, conjunction and negation (complement)
of classes

� cardinality constraints on properties, expressing the minimal and maximal number of values a prop-
erty can have for each subject instance

� symmetric, transitive and inverse properties

Since DAML+OIL allows more expressiveness and has more inferencing capabilities, a reasoner/query
language that understands its semantics is significantly more complicated.

7.3 Admin Module
The Admin Module currently offers very limited functionality for administrating the contents of reposito-
ries. More fine-grained functionality is needed for the module to be really useful. We are currently investi-
gating the options to accomplish this. One of the options is to extend RQL with primitives for updating and
deleting data, just like SQL does.

8 Conclusion
In this report we have presented Sesame, a generic architecture for storing and querying both RDF data and
RDF Schema information. Sesame is an important step beyond the currently available storage and query
devices for RDF, since it is the first publicly available implementation of a query language that is aware of
the RDF Schema semantics.

An important feature of the Sesame architecture is its abstraction from the details of any particular
repository used for the actual storage. This makes it possible to port Sesame to a large variety of different
repositories, including relational databases, RDF triple stores, and even remote storage services on the Web.

Sesame itself is a server-based application, and can therefore be used as a remote service for storing
and querying data on the Semantic Web. As with the storage layer, Sesame abstracts from any particular
communication protocol, so that Sesame can easily be connected to different clients by writing different
protocol handlers.

We have constructed a concrete implementation of the generic architecture, using PostgreSQL as a
repository and using HTTP as communication protocol handlers.

Important next steps to expand Sesame towards a full fledged storage and querying service for the
Semantic Web include its extension from RDF Schema to DAML+OIL and implementations for different
repositories, notably those that can live elsewhere on the Web.

A12R/OTK/2001/D10/v1.0 1st October, 2001 16

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

A Installation instructions

A.1 Required software
Sesame requires the following software packages installed:

� The PostgreSQL DBMS
� The Tomcat web server/servlet container
� A Java 2 SDK
� the Java-Xerces XML parser
� The ARP RDF parser

All of this software is freely available on teh Internet. What follows is a description of necessary actions
to get Sesame up-and-running.

A.2 PostgreSQL
PostgreSQL is an object-relational DBMS distributed under an Open Source license. PostgreSQL can be
downloaded from one aof that sites shown at http://www.postgresql.org. Sesame has been tested
with versions starting from 7.0.2. We recommend using version 7.1.3.

The following steps need to be done to prepare PostgreSQL for Sesame:

1. In case you have downloaded a source distribution of PostgreSQL, compile both PostgreSQL itself
and its JDBC-driver. In case you have downloaded a binary distribution, you will also have to down-
load a JDBC-driver. JDBC-drivers for PostgreSQL can be found at http://jdbc.postgresql.
org.

2. Install PostgreSQL. Please see the installation instruction supplied with PostgreSQL for any questions
about the installation of PostgreSQL.

3. In case you are using version 7.1 or newer, you will need to turn of the default SQL inheritance. This
can be done by editing the file [POSTGRESQL DIR]/data/postgresql.conf. Make sure
this file contains the following line:

sql inheritance = false.

4. Configure the Host-Based Access. By default, PostgreSQL only allows you to connect to it from the
machine itself. If Sesame will be run on another machine, you will need to edit the file [POST-
GRESQL DIR]/data/pg hba.conf so that PostgreSQL will also accept connections from that
machine. Please see the PostgreSQL installation documentation if you have any questions on how to
do this properly.

5. (Re)start the PostgreSQL server with the TCP/IP connections enabled. You can start PostgreSQL with
the command [POSTGRESQL DIR]/bin/postmaster -i. The -i flag enables the TCP/IP
connections. It is probably wise to set up the machine to automatically start and stop PostgreSQL
when it is turned on and off.

6. Create a user account for Sesame. You can create a new user account in PostgreSQL with the com-
mand [POSTGRESQL DIR]/bin/createuser. We’ll assume that the user is called ’sesame’ in
the rest of this document. PostgreSQL will ask you whether the new user should be able to create
new databases or more users. You can answer both questions with ’no’.

7. Create a new database called ’test-db’. You can do this with the command[POSTGRESQL DIR]/bin/createdb
test-db. This database will be used later on to test whether Sesame has been correctly installed
and can be removed after that has been tested.

A12R/OTK/2001/D10/v1.0 1st October, 2001 17

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

A.3 Tomcat and Java 2 SDK
Tomcat is a web server that supports the Servlet 2.2 and JSP 1.1 specifications. Sesame needs such a web
server to be able to run. Tomcat is just one of the available web servers that support these two specifications.
Sesame should be able to run in any of those, but so far has only been tested with Tomcat.

Tomcat is distributed under the Apache Software License, which is an open source license. It is being
developed as part of the Jakarta Project. Tomcat can be downloaded from jakarta.apache.org. We suggest
that you use version 4 of Tomcat, as it’s configuration is much easier than the previous Tomcat versions.

To run Tomcat, you’ll also need a Java 2 SDK. Java 2 SDK’s are available for most mainstream plat-
forms. JDK’s for Microsoft Windows, Linux x86 and Solaris can be downloaded from java.sun.com/j2se/.
Please note that Tomcat require the Java 2 SDK for parsing JSP pages. Sesame’s JSP pages will not work if
you use the Java 2 Runtime Environment.

Installation of both the JDK and Tomcat should be straightforward. Please see the installation manuals
of both software packages if you have any questions about their installation.

A.4 Installing Sesame
The following steps describe the easiest procedure to install Sesame on Tomcat. The process doesn’t require
any reconfiguration of the web server. The procedure described here might not be the best option for you.
Please see your web server’s documentation if you want more fine-grained control over where and how
Sesame should be running.

1. Go to the web applications directory of your web server ([TOMCAT DIR]/webapps/ if you are
using Tomcat) and create a directory ’sesame’ there.

2. Extract the sesame.war package in the new ’sesame’ directory. You can do this on the command
line by executing the command jar -xf [PATH/TO/]sesame.war, or you can use a program
like WinZip to extract the archive.

3. Copy the PostgreSQL JDBC-driver (’postgresql-jdbcX.Y.Z.jar’) to the directory[SESAME DIR]/WEB-
INF/lib/.

4. Download Xerces-J (version 1 series) from http://xml.apache.org/xerces-j/ and copy
the file ’xerces.jar’ included in the package to the directory [SESAME DIR]/WEB-INF/lib/.

5. Download ARP from http://www.hpl.hp.co.uk/people/jjc/arp/ and copy the file
’arp.jar’ included in the package to the directory [SESAME DIR]/WEB-INF/lib/.

A.5 Configuring Sesame
A.5.1 databases.conf

The file [SESAME DIR]/WEB-INF/databases.conf contains information about the repositories
that Sesame needs. This file currently contains just one entry for the previously mentioned ’test-db’. The
file may require some modifications in order to work on your machine. You can use text editor to perform
the changes.

� In case PostgreSQL and Tomcat are not running on the the same machine, you’ll have to replace
localhost with the name of the machine running PostgreSQL.

� In case PostgreSQL is not listening to the default port (5432), replace 5432 with the port that it is
listening to.

� In case the user created for PostgreSQL is not called ’sesame’, replace sesame with the actual name.
� In case the user created for PostgreSQL has a password, enter this password between<db-password>

and </db-password>.

A12R/OTK/2001/D10/v1.0 1st October, 2001 18

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

A.5.2 web.xml

The file [SESAME DIR]/WEB-INF/web.xml defines which servlets Tomcat should run, with which
parameters and where they reside on the web server. Open this file in a text editor and perform the following
modifications:

� Replace SESAME DIRwith the path to the directory where Sesame is installed (i.e. [TOMCAT DIR]/webapps/sesame
if you’ve installed Sesame as described above).

� Replace SESAME PASSWORD with some other password. You can use this password when Sesame
is running for administration tasks (e.g. to force Sesame to reload the databases.conf file when you
have modified it).

A.6 Testing your installation
If you have performed all of the steps described above, Sesame should now be ready. Stop your web server
if it is still running and (re)start it. Pointing a browser to the location where you have installed Sesame (e.g.
http://MACHINE NAME:8080/sesame/ if you have installed Sesame as described in this document)
should now display the Sesame site.

You should also test whether the Sesame servlets are running correctly, and whether Sesame can talk
to PostgreSQL. Go to the Demo section and click on the ’Add data to a repository’ link. The page should
show ’Sesame Test DB’ as the one and only available repository. Try uploading the data from the quick
tutorial (click on the link at the top of the page). The password for uploading data to the test database is
’opensesame’.

Sesame will report some notifications (in green) about classes and properties already being defined. You
can savely ignore these. It’s the warnings (in orange) and the errors (in red) that you have to worry about.

If the data-upload was a success, you should also be able to extract it. Again, go to the Demo section
but now click on the ’Extract data from a repository’ link. Clicking on the Extract button should yield the
classes and properties of the example museum data.

Sesame has been successfully installed if all of this works. You can remove the test database if you
want. Please see the next two sections on how to add and remove repositories from Sesame.

A.7 Adding repositories
To add a repository to Sesame, perform the following steps:

1. Create a database in PostgreSQL using the command[POSTGRESQL DIR]/bin/createdb [DB NAME].
You are free to choose any name for [DB NAME].

2. Open the file [SESAME DIR]/WEB-INF/databases.conf in a text editor and add a new entry
for the new database. The easiest way to do this is to copy an existing entry (9 lines in total) and
to modify its parameters. The parameters that need attention are: id, description, url and admin-
password. Make sure that the new database gets a unique id. Sesame uses this id to identify its
repositories. The id is not directly related to the name of the database.

3. Point your browser to the ’config’ directory on the Sesame site (e.g. http://MACHINE NAME:8080/sesame/config/
if you have installed Sesame as described in this document). Enter the Sesame administration pass-
word and click on the Execute button.

4. You should now be able to select the new database on the pages accessible from the Demo section
(try reloading the frame if your browser shows a previously cached page).

A12R/OTK/2001/D10/v1.0 1st October, 2001 19

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

A.8 Removing repositories
To remove a repository from Sesame, perform the following steps:

1. Open the file [SESAME DIR]/WEB-INF/databases.conf in a text editor and remove the en-
try of the database that should be removed.

2. Point your browser to the ’config’ directory on the Sesame site (e.g. http://MACHINE NAME:8080/sesame/config/
if you have installed Sesame as described in this document). Enter the Sesame administration pass-
word and click on the Execute button.

3. You should no longer be able to select the database on the pages accessible from the Demo section
(try reloading the frame if your browser shows a previously cached page).

4. Remove the database from PostgreSQL using the command [POSTGRESQL DIR]/bin/dropdb
[DB NAME].

A.9 Notes from the developers
As Sesame is currently in the state of a prototype, things are due to change. Being a prototype, most effort
has so far gone in implementing the system. The installation procedure hasn’t received very much attention
yet.

One of the things that we would like to change is how Sesame is configured. We would like to replace
the databases.conf file with a database. In this database, we would like to store the configuration as RDF. A
dedicated administration front-end will support the system administrator’s tasks.

A12R/OTK/2001/D10/v1.0 1st October, 2001 20

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

References
[Alexaki et al., 2000] Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., and Tolle, K.

(2000). The RDFSuite: Managing Voluminous RDF Description Bases. Technical report, Institute of
Computer Science, FORTH, Heraklion, Greece. See http://www.ics.forth.gr/proj/isst/
RDF/RSSDB/rdfsuite.pdf.

[Barstow and Melnik, 2000] Barstow, A. and Melnik, S. (2000). SiRPAC: Simple RDF Parser and Com-
piler. http://www.w3.org/RDF/Implementations/SiRPAC/.

[Beckett, 2001] Beckett, D. (2001). The Design and Implementation of the Redland RDF Application
Framework. In Proceedings of Semantic Web Workshop of the 10th International World Wide Web Con-
ference, Hong-Kong, China.

[Box et al., 2000] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S., and Winer, D. (2000). Simple Object Access Protocol (SOAP) 1.1. W3c note, World Wide
Web Consortium. See http://www.w3.org/TR/SOAP/.

[Brickley and Guha, 2000] Brickley, D. and Guha, R. (2000). Resource Description Framework (RDF)
Schema Specification 1.0. Candidate recommendation, World Wide Web Consortium. See http:
//www.w3.org/TR/2000/CR-rdf-schema-20000327.

[Broekstra and Kampman, 2001] Broekstra, J. and Kampman, A. (2001). Query Language Definition. On-
To-Knowledge (IST-1999-10132) Deliverable 9, Aidministrator Nederland b.v. See http://www.
ontoknowledge.org/.

[Cattel et al., 2000] Cattel, R., Barry, D., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow, O.,
Stanienda, T., and Velez, F. (2000). The Object Database Standard: ODMG 3.0. Morgan Kaufmann.

[Chamberlin et al., 2001] Chamberlin, D., Florescu, D., Robie, J., Simeon, J., and Stefanescu, M. (2001).
XQuery: A Query Language for XML. Working draft, World Wide Web Consortium. See http:
//www.w3.org/TR/xquery/.

[Fensel et al., 2000] Fensel, D., van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit, C.,
van der Meer, J., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R., Bremdal,
B., Ygge, F., Lau, T., Novotny, B., Reimer, U., and Horrocks, I. (2000). On-To-Knowledge: Ontology-
based Tools for Knowledge Management. In Proceedings of the eBusiness and eWork 2000 (EMMSEC
2000) Conference, Madrid, Spain.

[Guha, 2001] Guha, R. (2001). rdfDB. http://web1.guha.com/rdfdb/.

[Horrocks et al., 2001] Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D.,
Connoly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila, O., McGuin-
ness, D., and Stein, L. A. (2001). DAML+OIL. http://www.daml.org/2001/03/daml+
oil-index.html.

[Karvounarakis et al., 2000] Karvounarakis, G., Christophides, V., Plexousakis, D., and Alexaki, S. (2000).
Querying community web portals. Technical report, Institute of Computer Science, FORTH, Heraklion,
Greece. See http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf.

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Resource Description Framework (RDF):
Model and Syntax Specification. Recommendation, World Wide Web Consortium. See http://www.
w3.org/TR/REC-rdf-syntax/.

[Melnik, 2000] Melnik, S. (2000). RDF API Draft. public draft, Database Group, Stanford University. See
http://www-db.stanford.edu/˜melnik/rdf/api.html.

A12R/OTK/2001/D10/v1.0 1st October, 2001 21

Sesame: A generic Architecture for Storing and Querying RDF and RDF Schema

[Miller, 2001] Miller, L. (2001). RDF Squish query language and Java implementation. Public draft,
Institute for Learning and Research Technology. See http://ilrt.org/discovery/2001/02/
squish/.

[Nejdl et al., 2000] Nejdl, W., Wolpers, M., and Capella, C. (2000). The RDF Schema Revisited. In
Modelle und Modellierungssprachen in Informatik und Wirtschaftsinformatik, Modellierung 2000, St.
Goar. Foelbach Verlag, Koblenz.

[Reggiori, 2001] Reggiori, A. (2001). RDFStore. http://rdfstore.jrc.it/.

[Wagner, 2001] Wagner, H. (2001). Extensible open rdf. http://eor.dublincore.org/.

A12R/OTK/2001/D10/v1.0 1st October, 2001 22

